Home
Class 8
MATHS
If 6^(x) -36=7740, then x^(x) =...

If `6^(x) -36=7740`, then `x^(x)` =

A

7796

B

243

C

3125

D

46656

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(6^x - 36 = 7740\), we can follow these steps: ### Step 1: Isolate \(6^x\) We start by adding 36 to both sides of the equation to isolate \(6^x\). \[ 6^x = 7740 + 36 \] ### Step 2: Calculate the right side Now, we perform the addition on the right side: \[ 6^x = 7776 \] ### Step 3: Express \(7776\) as a power of \(6\) Next, we need to express \(7776\) as a power of \(6\). We can do this by calculating powers of \(6\): - \(6^1 = 6\) - \(6^2 = 36\) - \(6^3 = 216\) - \(6^4 = 1296\) - \(6^5 = 7776\) From this, we can see that: \[ 6^x = 6^5 \] ### Step 4: Equate the exponents Since the bases are the same, we can equate the exponents: \[ x = 5 \] ### Step 5: Calculate \(x^x\) Now that we have found \(x\), we need to calculate \(x^x\): \[ x^x = 5^5 \] ### Step 6: Calculate \(5^5\) To calculate \(5^5\): \[ 5^5 = 5 \times 5 \times 5 \times 5 \times 5 \] Calculating step by step: 1. \(5 \times 5 = 25\) 2. \(25 \times 5 = 125\) 3. \(125 \times 5 = 625\) 4. \(625 \times 5 = 3125\) Thus, we find: \[ 5^5 = 3125 \] ### Final Answer Therefore, the value of \(x^x\) is: \[ \boxed{3125} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • DISTANCE, TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test-3 |20 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos

Similar Questions

Explore conceptually related problems

If 6^(x-y)=36 and 3^(x+y)=729 , then find x^(2)-y^(2) .

15x^(2)-7x-36=0:

If (0.3 (3x -4))/(5) + (0.4 x + 3.6)/(5) = 3.5x then x = ____

If P = ( x ^(2) - 36)/( x ^(2) - 49) and Q = ( x + 6)/(x - 7) , then find the vlaue of ( P )/( Q).

If 3^(x)+3^(x+1)=36 , then the value of x^(x) is :

If {:[(4,-5),(3,6)]:}+2X={:[(8,-1),(-7,2)]:} , then X^(T) =

S CHAND IIT JEE FOUNDATION-EXPONENTS -QUESTION BANK
  1. The value of (5.(25)^(n+1) + 25.(5)^(2n-1))/(25.(5)^(2n) -105(25)^(n-1...

    Text Solution

    |

  2. If 5sqrt(5) xx 5^(3) /5^(-3/2) = 5^(a +2) then the value of a is

    Text Solution

    |

  3. What is the expression (x+y)^(-1) (x^(-1) +y^(-1)) (xy^(-1) +x^(-1)y)^...

    Text Solution

    |

  4. If 2^(x) - 2^(x-1)=4, then what is the value of 2^(x) + 2^(x-1) ?

    Text Solution

    |

  5. If x=y^(z), y = z^(x) and z=x^(y), then

    Text Solution

    |

  6. Prove that: 1/(1+x^(b-a)+\ x^(c-a))+1/(1+x^(a-b)+\ x^(c-b))+1/(1+x^(b-...

    Text Solution

    |

  7. Find the value of x if [3^(2x-2) +10] // 13=7

    Text Solution

    |

  8. Prove that: (2^(1/2)\ x\ 3^(1/3)\ x\ 4^(1/4))/(10^(-1/5)\ x\ 5^(3/5))\...

    Text Solution

    |

  9. x^((a+b-c)/((a-c)(b-c))) . x^((b+c-a)/((b-a)(c-a))) . x^((c+a-b)/((c-b...

    Text Solution

    |

  10. The value of (x^(q)/x^(r))^(1/(qr)) xx (x^(r)/x^(p))^(1/(rp)) xx (x^(p...

    Text Solution

    |

  11. The largest number among the following is:

    Text Solution

    |

  12. If 6^(x) -36=7740, then x^(x) =

    Text Solution

    |

  13. The value of: (9^(x)(9^(x-1)))^(x)/(9^(x+1).3^(2x-2)){(729^(x/3))/8...

    Text Solution

    |

  14. Find the value of (2^(1//4)- 1) (2^(3//4) + 2^(1//2) +2^(1//4) + 1)

    Text Solution

    |

  15. Simplify: (a^(1/2) +a^(-1/2))/(1-a) + (1-a^(-1/2))/(1-sqrt(a))

    Text Solution

    |

  16. If 3^(x+y) =81 and 81^(x-y) = 3, then the value of x and y are:

    Text Solution

    |

  17. Find x, If 8^(x-2) xx (1/2)^(4-3x) = (0.0625)^(x)

    Text Solution

    |

  18. Find the value of the expression ((x^(a+b))^2xx (x^(b+c))^2xx(x^(c+a))...

    Text Solution

    |

  19. If (2.4)^(x) =(0.24)^(y) =10^(z), then show that 1/x - 1/z =1/y

    Text Solution

    |

  20. If 2^(x) = 4^(y) = 8^(z) and xyz = 288, the value of 1/(2x) + 1/(4y) +...

    Text Solution

    |