Home
Class 8
MATHS
The value of: (9^(x)(9^(x-1)))^(x)/(9...

The value of:
`(9^(x)(9^(x-1)))^(x)/(9^(x+1).3^(2x-2)){(729^(x/3))/81}^(-x) + (3^(a) -2^(3) .3^(a-2))/(3^(a) -3^(a-1))` is:

A

9

B

6

C

12

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{(9^{x}(9^{x-1}))^{x}}{9^{x+1} \cdot 3^{2x-2}} \cdot \left(\frac{(729^{\frac{x}{3}})}{81}\right)^{-x} + \frac{(3^{a} - 2^{3} \cdot 3^{a-2})}{(3^{a} - 3^{a-1})} \] we will break it down step by step. ### Step 1: Simplify the numerator of the first term The numerator is \((9^{x}(9^{x-1}))^{x}\). Using the property of exponents \(a^m \cdot a^n = a^{m+n}\): \[ 9^{x} \cdot 9^{x-1} = 9^{x + (x-1)} = 9^{2x - 1} \] Now, raise this to the power of \(x\): \[ (9^{2x - 1})^{x} = 9^{(2x - 1)x} = 9^{2x^2 - x} \] ### Step 2: Simplify the denominator of the first term The denominator is \(9^{x+1} \cdot 3^{2x-2}\). Since \(9 = 3^2\), we can rewrite \(9^{x+1}\): \[ 9^{x+1} = (3^2)^{x+1} = 3^{2(x+1)} = 3^{2x + 2} \] Thus, the denominator becomes: \[ 3^{2x + 2} \cdot 3^{2x - 2} = 3^{(2x + 2) + (2x - 2)} = 3^{4x} \] ### Step 3: Combine the first term Now we can rewrite the first term: \[ \frac{9^{2x^2 - x}}{3^{4x}} \] Since \(9 = 3^2\), we can express \(9^{2x^2 - x}\) as: \[ (3^2)^{2x^2 - x} = 3^{2(2x^2 - x)} = 3^{4x^2 - 2x} \] Now, substituting this back into our expression: \[ \frac{3^{4x^2 - 2x}}{3^{4x}} = 3^{(4x^2 - 2x) - 4x} = 3^{4x^2 - 6x} \] ### Step 4: Simplify the second term The second term is: \[ \frac{(3^{a} - 2^{3} \cdot 3^{a-2})}{(3^{a} - 3^{a-1})} \] Factor out \(3^{a-2}\) from the numerator: \[ 3^{a-2}(3^2 - 2^3) = 3^{a-2}(9 - 8) = 3^{a-2}(1) = 3^{a-2} \] Now, factor out \(3^{a-1}\) from the denominator: \[ 3^{a-1}(3 - 1) = 3^{a-1}(2) \] Thus, the second term simplifies to: \[ \frac{3^{a-2}}{2 \cdot 3^{a-1}} = \frac{3^{a-2}}{2 \cdot 3^{a-1}} = \frac{1}{2} \cdot \frac{3^{a-2}}{3^{a-1}} = \frac{1}{2} \cdot 3^{-1} = \frac{1}{6} \] ### Step 5: Combine both terms Now we have: \[ 3^{4x^2 - 6x} + \frac{1}{6} \] ### Final Answer The value of the expression is: \[ 3^{4x^2 - 6x} + \frac{1}{6} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • DISTANCE, TIME AND SPEED

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test-3 |20 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos

Similar Questions

Explore conceptually related problems

(x-3)/(9)-(x-2)/(10)=1

The solution of the equation 9^(x)-2^(x+(1)/(2))=2^(x+(3)/(2))-3^(2x-1)

Evalutate : int (x ^(3) +3x ^(2)+x+9)/((x ^(2) +1) (x ^(2) +3))dx.

(1) / (3) x ^ (2) -2x-9

(x-1)/(3)+(2x+5)/(6)=(3x-6)/(9)-(2x-5)/(2)

Solve : 3(81)^(x) + 3 = 9^(x + 1) + 9^(x) .

(5x)/(3)-(x-2)/(3)=(9)/(4)-(1)/(2)(x-(2x-1)/(3))

int(x^(2)-1)/(x^(3)-3x-9)dx

S CHAND IIT JEE FOUNDATION-EXPONENTS -QUESTION BANK
  1. The value of (5.(25)^(n+1) + 25.(5)^(2n-1))/(25.(5)^(2n) -105(25)^(n-1...

    Text Solution

    |

  2. If 5sqrt(5) xx 5^(3) /5^(-3/2) = 5^(a +2) then the value of a is

    Text Solution

    |

  3. What is the expression (x+y)^(-1) (x^(-1) +y^(-1)) (xy^(-1) +x^(-1)y)^...

    Text Solution

    |

  4. If 2^(x) - 2^(x-1)=4, then what is the value of 2^(x) + 2^(x-1) ?

    Text Solution

    |

  5. If x=y^(z), y = z^(x) and z=x^(y), then

    Text Solution

    |

  6. Prove that: 1/(1+x^(b-a)+\ x^(c-a))+1/(1+x^(a-b)+\ x^(c-b))+1/(1+x^(b-...

    Text Solution

    |

  7. Find the value of x if [3^(2x-2) +10] // 13=7

    Text Solution

    |

  8. Prove that: (2^(1/2)\ x\ 3^(1/3)\ x\ 4^(1/4))/(10^(-1/5)\ x\ 5^(3/5))\...

    Text Solution

    |

  9. x^((a+b-c)/((a-c)(b-c))) . x^((b+c-a)/((b-a)(c-a))) . x^((c+a-b)/((c-b...

    Text Solution

    |

  10. The value of (x^(q)/x^(r))^(1/(qr)) xx (x^(r)/x^(p))^(1/(rp)) xx (x^(p...

    Text Solution

    |

  11. The largest number among the following is:

    Text Solution

    |

  12. If 6^(x) -36=7740, then x^(x) =

    Text Solution

    |

  13. The value of: (9^(x)(9^(x-1)))^(x)/(9^(x+1).3^(2x-2)){(729^(x/3))/8...

    Text Solution

    |

  14. Find the value of (2^(1//4)- 1) (2^(3//4) + 2^(1//2) +2^(1//4) + 1)

    Text Solution

    |

  15. Simplify: (a^(1/2) +a^(-1/2))/(1-a) + (1-a^(-1/2))/(1-sqrt(a))

    Text Solution

    |

  16. If 3^(x+y) =81 and 81^(x-y) = 3, then the value of x and y are:

    Text Solution

    |

  17. Find x, If 8^(x-2) xx (1/2)^(4-3x) = (0.0625)^(x)

    Text Solution

    |

  18. Find the value of the expression ((x^(a+b))^2xx (x^(b+c))^2xx(x^(c+a))...

    Text Solution

    |

  19. If (2.4)^(x) =(0.24)^(y) =10^(z), then show that 1/x - 1/z =1/y

    Text Solution

    |

  20. If 2^(x) = 4^(y) = 8^(z) and xyz = 288, the value of 1/(2x) + 1/(4y) +...

    Text Solution

    |