Home
Class 8
MATHS
If x = 3 + 2 sqrt2 , find the value sqrt...

If `x = 3 + 2 sqrt2 ,` find the value `sqrtx - (1)/(sqrtx)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x = 3 + 2\sqrt{2} \) and we need to find the value of \( \sqrt{x} - \frac{1}{\sqrt{x}} \), we will follow these steps: ### Step 1: Find \( \frac{1}{x} \) We start with the expression for \( x \): \[ x = 3 + 2\sqrt{2} \] To find \( \frac{1}{x} \), we rationalize the denominator: \[ \frac{1}{x} = \frac{1}{3 + 2\sqrt{2}} \cdot \frac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}} = \frac{3 - 2\sqrt{2}}{(3 + 2\sqrt{2})(3 - 2\sqrt{2})} \] Now, we will calculate the denominator using the difference of squares: \[ (3 + 2\sqrt{2})(3 - 2\sqrt{2}) = 3^2 - (2\sqrt{2})^2 = 9 - 8 = 1 \] Thus, we have: \[ \frac{1}{x} = 3 - 2\sqrt{2} \] ### Step 2: Find \( x + \frac{1}{x} \) Now we can find \( x + \frac{1}{x} \): \[ x + \frac{1}{x} = (3 + 2\sqrt{2}) + (3 - 2\sqrt{2}) = 3 + 2\sqrt{2} + 3 - 2\sqrt{2} = 6 \] ### Step 3: Use the identity to find \( \sqrt{x} - \frac{1}{\sqrt{x}} \) We know that: \[ \sqrt{x} - \frac{1}{\sqrt{x}} = \sqrt{x} + \frac{1}{\sqrt{x}} - 2 \] Let \( y = \sqrt{x} + \frac{1}{\sqrt{x}} \). From the previous step, we can find \( y^2 \): \[ y^2 = x + 2 + \frac{1}{x} \] Substituting \( x + \frac{1}{x} = 6 \): \[ y^2 = 6 + 2 = 8 \] Thus, \( y = \sqrt{8} = 2\sqrt{2} \). ### Step 4: Calculate \( \sqrt{x} - \frac{1}{\sqrt{x}} \) Now we can find: \[ \sqrt{x} - \frac{1}{\sqrt{x}} = y - 2 = 2\sqrt{2} - 2 \] ### Step 5: Final Result The final answer is: \[ \sqrt{x} - \frac{1}{\sqrt{x}} = 2(\sqrt{2} - 1) \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK|25 Videos
  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • AREA AND PERIMETER OF RECTANGLE, SQUARE, PARALLELOGRAM, TRIANGLE AND CIRCLES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank - 25 (M.C.Q) |15 Videos

Similar Questions

Explore conceptually related problems

If x = 1 + sqrt2 , then find the value of sqrtx+(1/sqrtx) . यदि x = 1 + sqrt2 , है, तो sqrtx+(1/sqrtx) का मान ज्ञात कीजिए ?

If x = 5+2sqrt6 , then the value of (sqrtx +frac(1)(sqrtx)) is (A) 2sqrt2 (B) 3sqrt2 (C ) 2sqrt3 (D) 3sqrt3

If x=3+2 sqrt2 , then the value of sqrtx-1/sqrtx is : यदि x=3+2 sqrt2 , तब sqrtx-1/sqrtx का मान :

If x = 2 + sqrt3 then the value of sqrtx + 1/sqrtx is