Home
Class 8
MATHS
Find the value of (25 a ^(2) + 16 b ^(2)...

Find the value of `(25 a ^(2) + 16 b ^(2) + 9 + 40 ab - 2 4b - 30 a)` at `a =- 1` and `b =2.`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( 25a^2 + 16b^2 + 9 + 40ab - 24b - 30a \) at \( a = -1 \) and \( b = 2 \), we will substitute the values of \( a \) and \( b \) into the expression and simplify step by step. ### Step-by-Step Solution: 1. **Substituting the values**: Substitute \( a = -1 \) and \( b = 2 \) into the expression: \[ 25(-1)^2 + 16(2)^2 + 9 + 40(-1)(2) - 24(2) - 30(-1) \] 2. **Calculating each term**: - Calculate \( 25(-1)^2 \): \[ 25 \times 1 = 25 \] - Calculate \( 16(2)^2 \): \[ 16 \times 4 = 64 \] - The constant term is \( 9 \). - Calculate \( 40(-1)(2) \): \[ 40 \times -1 \times 2 = -80 \] - Calculate \( -24(2) \): \[ -24 \times 2 = -48 \] - Calculate \( -30(-1) \): \[ -30 \times -1 = 30 \] 3. **Combining all terms**: Now, combine all the calculated values: \[ 25 + 64 + 9 - 80 - 48 + 30 \] 4. **Simplifying the expression**: - First, combine the positive terms: \[ 25 + 64 + 9 + 30 = 128 \] - Now combine the negative terms: \[ -80 - 48 = -128 \] - Finally, combine the results: \[ 128 - 128 = 0 \] ### Final Answer: The value of the expression at \( a = -1 \) and \( b = 2 \) is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK|25 Videos
  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • AREA AND PERIMETER OF RECTANGLE, SQUARE, PARALLELOGRAM, TRIANGLE AND CIRCLES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank - 25 (M.C.Q) |15 Videos

Similar Questions

Explore conceptually related problems

If a+b=7 and ab=12 find the value of a^(2)-ab+b^(2) .

Find the value of 2a^(4)xx(-(1)/(8)ab^(2))xx(16ab^(2)c) when a=-1;b=1;c=-1

If a+b=25 and a^(2)+b^(2)=225 then find ab

If a+b=7 and ab=12, find the value of (a^(2)-ab+b^(2))