Home
Class 8
MATHS
Simplify, (x - y ) ^(2) + (x-y) - 6x (x ...

Simplify,` (x - y ) ^(2) + (x-y) - 6x (x ^(2) - y ^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( (x - y)^2 + (x - y) - 6x(x^2 - y^2) \), we will follow these steps: ### Step 1: Expand \( (x - y)^2 \) Using the formula \( (a - b)^2 = a^2 - 2ab + b^2 \): \[ (x - y)^2 = x^2 - 2xy + y^2 \] ### Step 2: Rewrite the expression Now, substituting the expanded form back into the expression: \[ x^2 - 2xy + y^2 + (x - y) - 6x(x^2 - y^2) \] ### Step 3: Expand \( -6x(x^2 - y^2) \) Recall that \( x^2 - y^2 = (x - y)(x + y) \): \[ -6x(x^2 - y^2) = -6x(x - y)(x + y) \] However, for simplification, we can directly expand it: \[ -6x(x^2) + 6x(y^2) = -6x^3 + 6xy^2 \] ### Step 4: Combine all parts Now, we combine all the parts: \[ x^2 - 2xy + y^2 + x - y - 6x^3 + 6xy^2 \] ### Step 5: Rearrange the expression Now, we can rearrange the terms: \[ -6x^3 + x^2 + 6xy^2 - 2xy + y^2 + x - y \] ### Step 6: Write the final simplified expression The final simplified expression is: \[ -6x^3 + x^2 + 6xy^2 - 2xy + y^2 + x - y \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK|25 Videos
  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • AREA AND PERIMETER OF RECTANGLE, SQUARE, PARALLELOGRAM, TRIANGLE AND CIRCLES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank - 25 (M.C.Q) |15 Videos

Similar Questions

Explore conceptually related problems

Simplify: 5 (x + 3y) -2 (3x-4y)

Simplify (2x + y) (1 + 4x + 3y) -6x (x + y)

Simplify: x^(2)(x-y)y^(2)(x+2y)

Simplify ((x-y)^(2))/(x^(2)-y^(2))

simplify: 3x - [3y - {2x - (y - x)}]

Simplify : ( 3y ( x - y) - 2x ( y -2x))/( 7x ( x - y) - 3 ( x ^(2) - y ^(2)))

Simplify: 25(2x+y)^(2)-16(x-y)^(2)

Simplify (x+y+z)^(3)-(x-y-z)^(2) .