Home
Class 8
MATHS
Find the product (2a + 3b - 4c) (4a ^(2)...

Find the product `(2a + 3b - 4c) (4a ^(2) + 9b ^(2) + 16 c ^(2) - 6 ab + 12 bc +8 ca)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the product \((2a + 3b - 4c)(4a^2 + 9b^2 + 16c^2 - 6ab + 12bc + 8ca)\), we can use the identity for the product of a sum and a sum of squares. ### Step-by-Step Solution: **Step 1: Identify the terms.** We have two expressions: - First expression: \(2a + 3b - 4c\) - Second expression: \(4a^2 + 9b^2 + 16c^2 - 6ab + 12bc + 8ca\) **Hint:** Recognize that the second expression can be rewritten in terms of squares and products. **Step 2: Rewrite the second expression.** Notice that: - \(4a^2 = (2a)^2\) - \(9b^2 = (3b)^2\) - \(16c^2 = (-4c)^2\) - \(-6ab = -2(2a)(3b)\) - \(12bc = 2(3b)(-4c)\) - \(8ca = 2(2a)(-4c)\) This suggests that the second expression can be represented as: \[ (2a + 3b - 4c)^2 \] **Hint:** Look for patterns in the coefficients to recognize squares and products. **Step 3: Apply the identity.** Using the identity: \[ (x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + xz + yz) \] we can see that: \[ (2a + 3b - 4c)(4a^2 + 9b^2 + 16c^2 - 6ab + 12bc + 8ca) = (2a + 3b - 4c)^3 \] **Hint:** Recognize that the product can be simplified to a cube. **Step 4: Expand the cube.** Now we need to expand \((2a + 3b - 4c)^3\): \[ (2a + 3b - 4c)^3 = (2a)^3 + (3b)^3 + (-4c)^3 + 3(2a)(3b)(-4c) \] Calculating each term: - \((2a)^3 = 8a^3\) - \((3b)^3 = 27b^3\) - \((-4c)^3 = -64c^3\) - \(3(2a)(3b)(-4c) = -72abc\) **Hint:** Use the formula for the cube of a binomial to simplify calculations. **Step 5: Combine the results.** Putting it all together: \[ 8a^3 + 27b^3 - 64c^3 - 72abc \] **Final Answer:** The product \((2a + 3b - 4c)(4a^2 + 9b^2 + 16c^2 - 6ab + 12bc + 8ca)\) simplifies to: \[ 8a^3 + 27b^3 - 64c^3 - 72abc \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK|25 Videos
  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • AREA AND PERIMETER OF RECTANGLE, SQUARE, PARALLELOGRAM, TRIANGLE AND CIRCLES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank - 25 (M.C.Q) |15 Videos

Similar Questions

Explore conceptually related problems

Find the product: (2a-3b-2c)(4a^(2)+9b^(2)+4c^(2)+6ab-6bc+4ca)

Find the product (2a-3b-2c)(4a^(2)+9b^(2)+4c^(2)+6ab-6bc+4ca) .

Find the square root of : 4 a ^(2) + 9b ^(2) + c ^(2) - 12 ab + 6 bc - 4 ac

If a= 297, b= 298, c= 299 and find a^(2) + b^(2) + c^(2) - ab - bc - ca ?

If a^(2) + b^(2) + c^(2) =ab + bc + ca find (a + c)/(b) = ?

Find the product : (i) (a+2b+4c)(a^(2)+4b^(2)+16c^(2)-2ab-8bc-4ca) (ii) (3x-5y-4)(9x^(2)+25y^(2)+15xy+12x-20y+16) (iii) (2-3b-7c)(4+9b^(2)+49c^(2)+6b-21bc+14c) (iv) (sqrt(2)a+2sqrt(2)b+c)(2a^(2)+8b^(2)+c^(2)-4ab-2sqrt(2)bc-sqrt(2)ac)

If a+b+c=6, a^(2) +b^(2)+ c^(2)=16 , find ab+bc +ca = ?

For real a, b and c if a^(2) + b^(2) + c^(2) = ab + bc + ca , then find the value of (a + b + c)^(2) A. 9a^(2) B. 81 a^(2) C. 27 a^(2) D. 24 a^(2)