Home
Class 8
MATHS
(1)/(2) (a + b) (a ^(2) + b ^(2) ) +(1)/...

`(1)/(2) (a + b) (a ^(2) + b ^(2) ) +(1)/(2) (a - b) (a ^(2) - b ^(2))` is equal to

A

`a ^(3) - b ^(3)`

B

`a ^(3) + 3a ^(2) b + 3 ab ^(2) + b ^(3)`

C

`a ^(3) + b ^(3)`

D

`a ^(3) - 3 ab (a + b ) - b ^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{1}{2} (a + b) (a^2 + b^2) + \frac{1}{2} (a - b) (a^2 - b^2)\), we will follow these steps: ### Step 1: Expand the first term We start by expanding \(\frac{1}{2} (a + b) (a^2 + b^2)\). \[ \frac{1}{2} (a + b) (a^2 + b^2) = \frac{1}{2} \left( a(a^2 + b^2) + b(a^2 + b^2) \right) \] Expanding this gives: \[ = \frac{1}{2} (a^3 + ab^2 + b a^2 + b^3) = \frac{1}{2} (a^3 + b^3 + ab^2 + ba^2) \] ### Step 2: Expand the second term Next, we expand \(\frac{1}{2} (a - b) (a^2 - b^2)\). Using the difference of squares, we have: \[ \frac{1}{2} (a - b) (a^2 - b^2) = \frac{1}{2} (a - b)(a - b)(a + b) = \frac{1}{2} (a^3 - b^3) \] ### Step 3: Combine the two expanded terms Now we combine both expanded terms: \[ \frac{1}{2} (a^3 + b^3 + ab^2 + ba^2) + \frac{1}{2} (a^3 - b^3) \] This simplifies to: \[ = \frac{1}{2} (2a^3 + ab^2 + ba^2) = \frac{1}{2} (2a^3 + 2b^3) \] ### Step 4: Simplify the expression Now, we can simplify further: \[ = \frac{1}{2} \cdot 2(a^3 + b^3) = a^3 + b^3 \] ### Final Result Thus, the expression simplifies to: \[ \boxed{a^3 + b^3} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK|25 Videos
  • AREA AND PERIMETER OF RECTANGLE, SQUARE, PARALLELOGRAM, TRIANGLE AND CIRCLES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank - 25 (M.C.Q) |15 Videos

Similar Questions

Explore conceptually related problems

(a^(-1)-b^(-1))/(a^(-2)-b^(-2)) is equal to:

The value of the determinant |{:(1+ a^(2) - b^(2),2 ab , - 2b),(2ab, 1 - a^(2) + b^(2), 2a),(2b , -2a , 1-a^(2) - b^(2)):}| is equal to