Home
Class 8
MATHS
If x = (1 + 2y)/(2 + y) and y = ( 1 + 2t...

If `x = (1 + 2y)/(2 + y) and y = ( 1 + 2t)/( 2 + t),` then x equals

A

`(1 + 2t)/(3 + t)`

B

`(3 + 2t)/(2 + 3t)`

C

`(5t + 4)/(4 t + 5)`

D

`(5t + 6)/(6t + 5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve for \( x \) given the equations \( x = \frac{1 + 2y}{2 + y} \) and \( y = \frac{1 + 2t}{2 + t} \), we will substitute the expression for \( y \) into the equation for \( x \). ### Step-by-Step Solution: 1. **Substitute \( y \) in terms of \( t \)**: \[ y = \frac{1 + 2t}{2 + t} \] Now substitute this expression for \( y \) into the equation for \( x \): \[ x = \frac{1 + 2\left(\frac{1 + 2t}{2 + t}\right)}{2 + \left(\frac{1 + 2t}{2 + t}\right)} \] 2. **Simplify the numerator**: \[ x = \frac{1 + \frac{2(1 + 2t)}{2 + t}}{2 + \frac{1 + 2t}{2 + t}} \] The numerator becomes: \[ 1 + \frac{2(1 + 2t)}{2 + t} = \frac{(2 + t) + 2(1 + 2t)}{2 + t} = \frac{2 + t + 2 + 4t}{2 + t} = \frac{4 + 5t}{2 + t} \] 3. **Simplify the denominator**: The denominator becomes: \[ 2 + \frac{1 + 2t}{2 + t} = \frac{2(2 + t) + (1 + 2t)}{2 + t} = \frac{4 + 2t + 1 + 2t}{2 + t} = \frac{5 + 4t}{2 + t} \] 4. **Combine the results**: Now we can rewrite \( x \): \[ x = \frac{\frac{4 + 5t}{2 + t}}{\frac{5 + 4t}{2 + t}} \] Since the denominators are the same, they cancel out: \[ x = \frac{4 + 5t}{5 + 4t} \] ### Final Result: Thus, the value of \( x \) is: \[ x = \frac{4 + 5t}{5 + 4t} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK|25 Videos
  • AREA AND PERIMETER OF RECTANGLE, SQUARE, PARALLELOGRAM, TRIANGLE AND CIRCLES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank - 25 (M.C.Q) |15 Videos

Similar Questions

Explore conceptually related problems

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x = a sin 2t(1 + cos 2t) and y = b cos 2 t(1 – cos 2 t), show that ((d y)/(d x))_(at t =pi/4)=b/a.

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=