Home
Class 8
MATHS
Simplify : ( 3y ( x - y) - 2x ( y -2x))...

Simplify : `( 3y ( x - y) - 2x ( y -2x))/( 7x ( x - y) - 3 ( x ^(2) - y ^(2)))`

A

`(x -y)/(x + y)`

B

`1`

C

`(x +y)/(x -y)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(( 3y ( x - y) - 2x ( y -2x))/( 7x ( x - y) - 3 ( x ^{2} - y ^{2}))\), we will follow these steps: ### Step 1: Expand the Numerator Start by expanding the numerator \(3y(x - y) - 2x(y - 2x)\). \[ 3y(x - y) = 3yx - 3y^2 \] \[ -2x(y - 2x) = -2xy + 4x^2 \] Combining these, we get: \[ 3yx - 3y^2 - 2xy + 4x^2 = (3yx - 2xy) + 4x^2 - 3y^2 = xy + 4x^2 - 3y^2 \] ### Step 2: Expand the Denominator Now, expand the denominator \(7x(x - y) - 3(x^2 - y^2)\). \[ 7x(x - y) = 7x^2 - 7xy \] \[ -3(x^2 - y^2) = -3x^2 + 3y^2 \] Combining these, we get: \[ 7x^2 - 7xy - 3x^2 + 3y^2 = (7x^2 - 3x^2) - 7xy + 3y^2 = 4x^2 - 7xy + 3y^2 \] ### Step 3: Write the Simplified Expression Now, we can write the entire expression as: \[ \frac{xy + 4x^2 - 3y^2}{4x^2 - 7xy + 3y^2} \] ### Step 4: Factor the Numerator and Denominator Next, we will factor both the numerator and the denominator. For the numerator \(xy + 4x^2 - 3y^2\): We need to find two numbers that multiply to \(4 \times -3 = -12\) and add to \(1\) (the coefficient of \(xy\)). The numbers are \(-4\) and \(3\). Thus, we can rewrite: \[ 4x^2 - 3y^2 + xy = 4x^2 - 4xy + 3xy - 3y^2 = 4x(x - y) + 3y(x - y) = (4x + 3y)(x - y) \] For the denominator \(4x^2 - 7xy + 3y^2\): We need to find two numbers that multiply to \(4 \times 3 = 12\) and add to \(-7\). The numbers are \(-4\) and \(-3\). Thus, we can rewrite: \[ 4x^2 - 7xy + 3y^2 = 4x^2 - 4xy - 3xy + 3y^2 = 4x(x - y) - 3y(x - y) = (4x - 3y)(x - y) \] ### Step 5: Cancel Common Factors Now, we can simplify the expression: \[ \frac{(4x + 3y)(x - y)}{(4x - 3y)(x - y)} \] Since \(x - y\) is common in both the numerator and the denominator, we can cancel it out (assuming \(x \neq y\)): \[ \frac{4x + 3y}{4x - 3y} \] ### Final Answer Thus, the simplified expression is: \[ \frac{4x + 3y}{4x - 3y} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK|25 Videos
  • AREA AND PERIMETER OF RECTANGLE, SQUARE, PARALLELOGRAM, TRIANGLE AND CIRCLES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank - 25 (M.C.Q) |15 Videos

Similar Questions

Explore conceptually related problems

simplify: 3x - [3y - {2x - (y - x)}]

Simplify: 5 (x + 3y) -2 (3x-4y)

Simplify (2x + y) (1 + 4x + 3y) -6x (x + y)

3 - [x - {2y - (5x + y - 3) + 2x^(2)} - (x^(2) - 3y)]

Simplify : (i) (5x - 9y) - (-7x + y) (ii) (x^(2) -x) -(1)/(2)(x - 3 + 3x^(2)) (iii) [7 - 2x + 5y - (x -y)]-(5x + 3y -7) (iv) ((1)/(3)y^(2) - (4)/(7)y + 5) - ((2)/(7)y - (2)/(3)y^(2) + 2) - ((1)/(7)y - 3 + 2y^(2))

Simplify: (2x + 5y)(3x + 4y) - (7x + 3y)(2x + y)

Simplify: :x^(2)(x+2y)(x-3y)

Simplify : (3y)^(2) +x^(2)- (2y)^(2)

Simplify: (3x+2y)(4x+3y)-(2x-y)(7x-3y)