Home
Class 8
MATHS
Factorise: ab (c ^(2) +1) + c (a ^(2) + ...

Factorise: `ab (c ^(2) +1) + c (a ^(2) + b ^(2))`

A

`(ab + c) (a +bc)`

B

`(ac + b) ( ab + c)`

C

`(a+ bc)(ac+b)`

D

`(a+b) (ac +b)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( ab(c^2 + 1) + c(a^2 + b^2) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the given expression: \[ ab(c^2 + 1) + c(a^2 + b^2) \] ### Step 2: Expand the expression We can expand the expression to see if we can find common terms: \[ = abc^2 + ab + ca^2 + cb^2 \] ### Step 3: Group the terms Now, we can group the terms in a way that allows us to factor them: \[ = abc^2 + ca^2 + cb^2 + ab \] We can group the first two terms and the last two terms: \[ = (abc^2 + ca^2) + (cb^2 + ab) \] ### Step 4: Factor out common terms Now we can factor out common factors from each group: 1. From the first group \( abc^2 + ca^2 \), we can factor out \( ac \): \[ ac(bc + a) \] 2. From the second group \( cb^2 + ab \), we can factor out \( b \): \[ b(c + a) \] Putting it all together, we have: \[ = ac(bc + a) + b(c + a) \] ### Step 5: Factor out the common binomial Now we can see that \( (bc + a) \) and \( (c + a) \) can be factored out: \[ = (ac + b)(bc + a) \] ### Final Answer Thus, the factorized form of the expression is: \[ (ac + b)(bc + a) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

Factorise: ab (x ^(2) + y ^(2)) - xy (a ^(2) + b ^(2))

Factorise: ab ^(2) - bc^(2) - ab + c^(2)

Factorise: 15ab ^(2) - 20 a ^(2)b

Factorise : 1 + 2 ab - (a ^(2) + b ^(2))

Factorise: 1+ a + ac + a^(2)c

Factorise : a^(3) - ab^(2) + a^(2)b - b^(3)

Factorise: b^(2)-6ab-9a^(2)