Home
Class 8
MATHS
Factorise: 49 (2x + 3y) ^(2) - 70 ( 4x...

Factorise:
`49 (2x + 3y) ^(2) - 70 ( 4x ^(2) - 9 y ^(2)) + 25 ( 2 x - 3y ) ^(2)`

A

`4 ( x - 9y) ^(2)`

B

`9 (x + 4y) ^(2)`

C

`16 (x + 9 y ) ^(2)`

D

`16 (x - 9y) ^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( 49 (2x + 3y)^2 - 70 (4x^2 - 9y^2) + 25 (2x - 3y)^2 \), we will follow these steps: ### Step 1: Rewrite the expression We start by rewriting the expression clearly: \[ 49 (2x + 3y)^2 - 70 (4x^2 - 9y^2) + 25 (2x - 3y)^2 \] ### Step 2: Recognize and apply the difference of squares Notice that \( 4x^2 - 9y^2 \) can be factored as a difference of squares: \[ 4x^2 - 9y^2 = (2x)^2 - (3y)^2 = (2x + 3y)(2x - 3y) \] Thus, we can rewrite the expression: \[ 49 (2x + 3y)^2 - 70 \cdot (2x + 3y)(2x - 3y) + 25 (2x - 3y)^2 \] ### Step 3: Substitute variables for simplification Let \( a = 2x + 3y \) and \( b = 2x - 3y \). The expression now becomes: \[ 49a^2 - 70ab + 25b^2 \] ### Step 4: Recognize the quadratic form This expression resembles a quadratic in terms of \( a \) and \( b \): \[ 49a^2 - 70ab + 25b^2 \] We can factor this quadratic expression using the formula \( A^2 - 2AB + B^2 = (A - B)^2 \): \[ (7a - 5b)^2 \] ### Step 5: Substitute back the original variables Now we substitute back \( a \) and \( b \): \[ (7(2x + 3y) - 5(2x - 3y))^2 \] ### Step 6: Simplify the expression Now simplify the expression inside the parentheses: \[ 7(2x + 3y) - 5(2x - 3y) = 14x + 21y - 10x + 15y = (14x - 10x) + (21y + 15y) = 4x + 36y \] ### Final Step: Write the final factorized form Thus, the factorized form of the original expression is: \[ (4x + 36y)^2 \] ### Summary of the Factorization The final answer is: \[ (4x + 36y)^2 \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

Factorise : 16 (2x - y) ^(2) - 24 (4x ^(2) - y ^(2) ) + 9 ( 2x + y) ^(2)

Factorise: 4x ^(2) - y ^(2)+ 6y-9.

Factorise: (x - 2y )^(2) + 4x - 8y

Factorise : (x ^(2) + y ^(2) - z ^(2)) ^(2) -4x ^(2) y ^(2)

Factorise 49x^(2) - 16y^(2) .

Factorise: 4x ^(2) + 9y^(2) + 12 xy

(5x + 3y) (5x-3y) (25x ^ (2) + 9y ^ (2))

Factorise: 5a (2x -3y) + 2b (2x -3y)

Factorise: 14 x ^(3) + 21x ^(4) y - 28 x ^(2) y ^(2)

Factorise : x ^(4) + x ^(2) y ^(2) + y ^(4).