Home
Class 8
MATHS
a ^(2) - b ^(2) - c ^(2) + 2 bc + a + b ...

`a ^(2) - b ^(2) - c ^(2) + 2 bc + a + b - c` when factorised equals

A

`(a - b - c) (a - b + c + 1)`

B

`(a + b -c ) (a - b + c + 1)`

C

`(a - b + c) ( a - b + c + 1)`

D

`(a + b + c) (a - b + c + 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \( a^2 - b^2 - c^2 + 2bc + a + b - c \), we can follow these steps: ### Step 1: Rearrange the expression We start by rearranging the terms for clarity: \[ a^2 + a - b^2 - c^2 + 2bc + b - c \] ### Step 2: Group the terms Next, we can group the terms that can be factored together: \[ (a^2 + a) + (-b^2 + 2bc - c^2) + (b - c) \] ### Step 3: Factor the first group From the first group \( a^2 + a \), we can factor out \( a \): \[ a(a + 1) + (-b^2 + 2bc - c^2) + (b - c) \] ### Step 4: Recognize a perfect square The second group \( -b^2 + 2bc - c^2 \) can be rewritten as: \[ -(b^2 - 2bc + c^2) = -(b - c)^2 \] So now we have: \[ a(a + 1) - (b - c)^2 + (b - c) \] ### Step 5: Combine the last two groups Now we can combine the last two groups: \[ a(a + 1) + (b - c) - (b - c)^2 \] ### Step 6: Factor the entire expression We can recognize that we can factor out \( (b - c) \) from the last two terms: \[ = a(a + 1) + (b - c)(1 - (b - c)) \] This simplifies to: \[ = a(a + 1) + (b - c)(1 - b + c) \] ### Step 7: Final factorization Now we can factor the entire expression: \[ = (a + b - c)(a - b + c + 1) \] Thus, the factorized form of the expression \( a^2 - b^2 - c^2 + 2bc + a + b - c \) is: \[ (a + b - c)(a - b + c + 1) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

Suppose A, B, C are defined as A = a^(2)b + ab^(2) - a^(2)c - ac^(2), B = b^(2)c + bc^(2) - a^(2)b - ab^(2) , and C = a^(2)c + ac^(2) - b^(2)c - bc^(2) , where a gt b gt c gt 0 and the equation Ax^(2) + Bx + C = 0 has equal roots, then a, b, c are in

If a^(2) + b^(2) + c^(2) + 96 = 8(a + b - 2c) , then sqrt(ab - bc + ca) is equal to :

b^(2)+c^(2)+2bc+4b+4c

If a, b, c are non zero complex numbers satisfying a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2),ab,ac),(ab,c^(2) + a^(2),bc),(ac,bc,a^(2) + b^(2))| = k a^(2) b^(2) c^(2) , then k is equal to

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

The positive square root of ((a + b) ^(2) - (c + d) ^(2))/( (a + b) ^(2) - (c - d ) ^(2)) xx ((a + b + c) ^(2) - d ^(2))/( (a + b -c ) ^(2 ) - d ^(2)) using factorisation is: