Home
Class 8
MATHS
The factors of a ^(2) -b ^(2) - 4c ^(2) ...

The factors of `a ^(2) -b ^(2) - 4c ^(2) + 4d ^(2) - 4 (ad - bc) ` are :

A

`(a + 2d + b + 2c) (a - 2d - b + 2c)`

B

`( a- 2d + b - 2c) (a + 2d - b + 2c)`

C

`(a - 2d + b - 2c) (a - 2d - b + 2c)`

D

`(a - 2d - b- 2c) (a + 2d+ b + 2c)`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \( a^2 - b^2 - 4c^2 + 4d^2 - 4(ad - bc) \), we can follow these steps: ### Step 1: Rewrite the expression Start with the given expression: \[ a^2 - b^2 - 4c^2 + 4d^2 - 4(ad - bc) \] Distributing the \(-4\) inside the parentheses gives: \[ a^2 - b^2 - 4c^2 + 4d^2 - 4ad + 4bc \] ### Step 2: Rearrange the terms Now, rearranging the expression: \[ a^2 - 4ad + 4d^2 - b^2 + 4bc - 4c^2 \] ### Step 3: Group the terms Group the first three terms and the last three terms: \[ (a^2 - 4ad + 4d^2) + (-b^2 + 4bc - 4c^2) \] ### Step 4: Factor the perfect squares Recognize that \(a^2 - 4ad + 4d^2\) is a perfect square: \[ (a - 2d)^2 \] And \(-b^2 + 4bc - 4c^2\) can be rewritten as: \[ -(b^2 - 4bc + 4c^2) = -(b - 2c)^2 \] Thus, we have: \[ (a - 2d)^2 - (b - 2c)^2 \] ### Step 5: Apply the difference of squares formula Now, we can apply the difference of squares formula \(x^2 - y^2 = (x + y)(x - y)\): Let \(x = (a - 2d)\) and \(y = (b - 2c)\): \[ (a - 2d + b - 2c)(a - 2d - (b - 2c)) \] ### Step 6: Simplify the factors Now simplify the factors: 1. \( (a - 2d + b - 2c) = (a + b - 2d - 2c) \) 2. \( (a - 2d - (b - 2c)) = (a - b + 2c - 2d) \) Thus, the final factored form is: \[ (a + b - 2d - 2c)(a - b + 2c - 2d) \] ### Final Answer The factors of the expression \( a^2 - b^2 - 4c^2 + 4d^2 - 4(ad - bc) \) are: \[ (a + b - 2d - 2c)(a - b + 2c - 2d) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

a^(2)-b^(2)-4bc+4c^(2)

One of the factors of (a^(2)-b^(2))(c^(2)-d^(2))-4abcd is

Sum of the factors of 4 b ^(2) c ^(2) - (b ^(2) + c ^(2)- a ^(2)) ^(2) is

Factorize: a^(2)+4b^(2)-4ab-4c^(2)

(a^(2)-b^(2)-c^(2)+d^(2))^(2)-4(ad-bc)^(2)

Find the square root of : 4 a ^(2) + 9b ^(2) + c ^(2) - 12 ab + 6 bc - 4 ac