Home
Class 8
MATHS
The factors of (x ^(4) - 7x ^(2) y ^(2) ...

The factors of `(x ^(4) - 7x ^(2) y ^(2) + y ^(4))` are

A

`(x ^(2) + y ^(2) - 3 xy) (x ^(2) + y ^(2) + 3xy)`

B

`(x ^(2) - y ^(2) - 3 xy) (x ^(2) + y ^(2) + 3xy)`

C

`(x ^(2) - y ^(2) - 3 xy) (x ^(2) - y ^(2) + 3xy)`

D

`(x ^(2) + y ^(2) + 3 xy) (x ^(2) - y ^(2) - 3xy)`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \( x^4 - 7x^2y^2 + y^4 \), we can follow these steps: ### Step-by-Step Solution: 1. **Rewrite the Expression**: We start with the expression: \[ x^4 - 7x^2y^2 + y^4 \] 2. **Identify a Suitable Form**: Notice that we can rewrite \(-7x^2y^2\) as \(-9x^2y^2 + 2x^2y^2\): \[ x^4 + 2x^2y^2 - 9x^2y^2 + y^4 \] 3. **Group the Terms**: Now, we can group the first three terms and the last term: \[ (x^4 + 2x^2y^2 + y^4) - 9x^2y^2 \] 4. **Recognize a Perfect Square**: The expression \(x^4 + 2x^2y^2 + y^4\) can be recognized as a perfect square: \[ (x^2 + y^2)^2 \] 5. **Substitute Back**: Substitute back into the expression: \[ (x^2 + y^2)^2 - 9x^2y^2 \] 6. **Apply the Difference of Squares**: We can now apply the difference of squares formula \(a^2 - b^2 = (a + b)(a - b)\): Let \(a = x^2 + y^2\) and \(b = 3xy\): \[ (x^2 + y^2 + 3xy)(x^2 + y^2 - 3xy) \] 7. **Final Factors**: Thus, the factors of the original expression \(x^4 - 7x^2y^2 + y^4\) are: \[ (x^2 + y^2 + 3xy)(x^2 + y^2 - 3xy) \] ### Final Answer: The factors of \(x^4 - 7x^2y^2 + y^4\) are: \[ (x^2 + y^2 + 3xy)(x^2 + y^2 - 3xy) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

Factor x ^ (4) + x ^ (2) y ^ (2) + y ^ (4)

The factors of x^4 - 14x^2y^(2) - 51y^4

The factor of 4x^(3)-7x^(2)-34x-8 is

Factors of 4x^(3)-7x^(2)-34x-8 are

On of the factors of 4x ^(2) + y ^(2) + 14 x - 7y - 4 xy +12 is equal to