Home
Class 8
MATHS
Factorise 4x ^(4) + 3x ^(2) +1...

Factorise `4x ^(4) + 3x ^(2) +1`

A

`(2x ^(2) + x +1) (2x ^(2) +x -1)`

B

`(2x ^(2) + x +1) (2x ^(2) -x +1)`

C

`(2x ^(2) + x -1) (2x ^(2) -x +1)`

D

`(2x ^(2) - x +1) (2x ^(2) -x -1)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \(4x^4 + 3x^2 + 1\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ 4x^4 + 3x^2 + 1 \] Notice that this is a bi-quadratic expression, which can be treated as a quadratic in terms of \(x^2\). ### Step 2: Substitute \(y = x^2\) Let \(y = x^2\). Then, we can rewrite the expression as: \[ 4y^2 + 3y + 1 \] ### Step 3: Factor the quadratic Next, we need to factor the quadratic \(4y^2 + 3y + 1\). We look for two numbers that multiply to \(4 \cdot 1 = 4\) and add up to \(3\). The numbers \(1\) and \(2\) fit this requirement. ### Step 4: Rewrite the middle term We can rewrite \(3y\) as \(2y + 1y\): \[ 4y^2 + 2y + 1y + 1 \] ### Step 5: Group the terms Now, we group the terms: \[ (4y^2 + 2y) + (1y + 1) \] ### Step 6: Factor by grouping Now, factor out the common factors from each group: \[ 2y(2y + 1) + 1(2y + 1) \] ### Step 7: Factor out the common binomial Now, we can factor out the common binomial \((2y + 1)\): \[ (2y + 1)(2y + 1) = (2y + 1)^2 \] ### Step 8: Substitute back \(y = x^2\) Now, substitute back \(y = x^2\): \[ (2x^2 + 1)^2 \] ### Final Answer Thus, the factorization of the original expression \(4x^4 + 3x^2 + 1\) is: \[ (2x^2 + 1)^2 \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

Factorise : x ^(4) + x ^(2) y ^(2) + y ^(4).

Factorise x^(4) + x^(2) + 1 .

Factorise : x^(4)-1

Factorise x ^(8) + x ^(4) +1

Factorise: 4x ^(2) + 9y^(2) + 12 xy

Factorise: x ^(8) - x ^(4) - 72

Factorise 4x ^(2) - 12 x + 9.

Factorise x^(4) + x^(3) - x^(2) - x .