Home
Class 8
MATHS
Factorise: a ^(4) - 20 a ^(2) + 64...

Factorise: `a ^(4) - 20 a ^(2) + 64`

A

`(a +2) (a-2) (a + 4) (a -4)`

B

`(a - 2) ^(2) (a - 4) ^(2)`

C

`(a - 2) ^(2) (a + 4)^(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^4 - 20a^2 + 64 \), we can follow these steps: ### Step 1: Recognize the form of the expression The expression \( a^4 - 20a^2 + 64 \) is a quadratic in terms of \( a^2 \). We can let \( x = a^2 \). Thus, the expression can be rewritten as: \[ x^2 - 20x + 64 \] ### Step 2: Factor the quadratic expression Next, we need to factor the quadratic \( x^2 - 20x + 64 \). We look for two numbers that multiply to \( 64 \) (the constant term) and add up to \( -20 \) (the coefficient of \( x \)). The numbers that satisfy this are \( -16 \) and \( -4 \). So, we can write: \[ x^2 - 20x + 64 = (x - 16)(x - 4) \] ### Step 3: Substitute back for \( x \) Now, we substitute back \( x = a^2 \): \[ (a^2 - 16)(a^2 - 4) \] ### Step 4: Factor further using the difference of squares Both factors can be further factored using the difference of squares: 1. \( a^2 - 16 = (a - 4)(a + 4) \) 2. \( a^2 - 4 = (a - 2)(a + 2) \) Thus, we have: \[ (a - 4)(a + 4)(a - 2)(a + 2) \] ### Final Answer The fully factored form of the expression \( a^4 - 20a^2 + 64 \) is: \[ (a - 4)(a + 4)(a - 2)(a + 2) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

Factorise: 15ab ^(2) - 20 a ^(2)b

Factorise : x^(4)-1

Factorise: y ^(16) - 63 y ^(8) - 64

Factorise: 64-x ^(2)

Factorise: x ^(2) - 20x+ 100

Factorise: x ^(2) - 9x + 20

Factorise: p ^(2) - 4p - 77

Factorise: 4x ^(2) - y ^(2)+ 6y-9.

Factorise: 3x ^(2) - 4x -4