Home
Class 8
MATHS
(0.86 xx 0. 86 xx 0. 86 + 0. 14 xx0.14 x...

`(0.86 xx 0. 86 xx 0. 86 + 0. 14 xx0.14 xx 0. 14)/(0.86 xx 0.86 - 0. 86 + 0.14 + 0.14 xx 0. 14) ` is equal to

A

1

B

0

C

2

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((0.86 \times 0.86 \times 0.86 + 0.14 \times 0.14 \times 0.14)/(0.86 \times 0.86 - 0.86 + 0.14 + 0.14 \times 0.14)\), we can follow these steps: ### Step 1: Define Variables Let \( a = 0.86 \) and \( b = 0.14 \). This simplifies our expression. ### Step 2: Rewrite the Expression The expression can now be rewritten as: \[ \frac{a^3 + b^3}{a^2 - a + b + b^2} \] ### Step 3: Apply the Sum of Cubes Formula Recall the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Using this identity, we can rewrite the numerator: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] ### Step 4: Expand the Denominator Now, let's expand the denominator: \[ a^2 - a + b + b^2 \] This remains as is for now. ### Step 5: Substitute the Identity into the Expression Substituting the identity for the numerator into our expression, we have: \[ \frac{(a + b)(a^2 - ab + b^2)}{a^2 - a + b + b^2} \] ### Step 6: Simplify the Expression Notice that \( a^2 - ab + b^2 \) is part of the denominator. Therefore, if \( a^2 - ab + b^2 \) is not zero, we can cancel it out: \[ = a + b \] ### Step 7: Calculate \( a + b \) Now, substituting back the values of \( a \) and \( b \): \[ a + b = 0.86 + 0.14 = 1 \] ### Final Answer Thus, the value of the original expression is: \[ \boxed{1} \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

The value of 1/2 [(0.96 xx 0.96 xx 0.96 + 0.84 xx 0.84 xx 0.84)/(0.96 xx 0.96 -0.96 xx 0.84 +0.84 xx0.84)] is.

(0.72 xx 0.72 xx 0.72 - 0.39 xx 0.39 xx 0.39)/(0.72 xx 0.72 +0.72 xx 0.39 + 0.39 xx 0.39) is equal to :