Home
Class 8
MATHS
Factors of (2x - 3y) ^(3) + ( 3y - 5z) ...

Factors of `(2x - 3y) ^(3) + ( 3y - 5z) ^(3) + ( 5z - 2x) ^(3)` are:

A

`3 ( 2x -3y) ( 3y - 5z) ( 5z - 2x)`

B

`3 ( 3x - 2y) (3y - 5z) ( 5z - 2x)`

C

`3 ( 2x - 3y) ( 5y - 3z) ( 5z - 2x)`

D

`3 ( 2x - 3y) (3y - 5z) (2z - 5x)`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \( (2x - 3y)^3 + (3y - 5z)^3 + (5z - 2x)^3 \), we can use the identity for the sum of cubes: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] ### Step 1: Identify \(a\), \(b\), and \(c\) Let: - \( a = 2x - 3y \) - \( b = 3y - 5z \) - \( c = 5z - 2x \) ### Step 2: Check if \( a + b + c = 0 \) Now, we need to check if \( a + b + c = 0 \): \[ a + b + c = (2x - 3y) + (3y - 5z) + (5z - 2x) \] Combine like terms: \[ = 2x - 2x - 3y + 3y - 5z + 5z = 0 \] Since \( a + b + c = 0 \), we can use the identity. ### Step 3: Apply the identity From the identity, we have: \[ a^3 + b^3 + c^3 = 3abc \] ### Step 4: Calculate \(abc\) Now we need to calculate \(abc\): \[ abc = (2x - 3y)(3y - 5z)(5z - 2x) \] ### Step 5: Write the final factorization Thus, we can write: \[ (2x - 3y)^3 + (3y - 5z)^3 + (5z - 2x)^3 = 3(2x - 3y)(3y - 5z)(5z - 2x) \] ### Final Answer The factors of \( (2x - 3y)^3 + (3y - 5z)^3 + (5z - 2x)^3 \) are: \[ 3(2x - 3y)(3y - 5z)(5z - 2x) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

Factorize: (2x-3y)^(3)+(4z-2x)^(3)+(3y-4z)^(3)

Eliminate x, y, zx + y + z = 0x ^ (2) + y ^ (2) + z ^ (2) = a ^ (2) x ^ (3) + y ^ (3) + z ^ (3 ) = b ^ (3) x ^ (5) + y ^ (5) + z ^ (5) = c ^ (5)

Factorize : (x-2y)^(3)+(2y-3z)^(3)+(3z-x)^(3)

Factorize: (3x-2y)^(3)+(2y-4z)^(3)+(4z-3x)^(3)

Add 2x - 3y + z , 5y - x + 7z and 3x - y - 6z.

Factorize :(x-y)^(3)+(y-z)^(3)+(z-x)^(3)