Home
Class 8
MATHS
Factorise : a ^(2) + (1)/(a ^(2)) + 3 - ...

Factorise : `a ^(2) + (1)/(a ^(2)) + 3 - 2a - (2)/(a)`

A

`(a + (1)/(a) -a) (a - (1)/(a) + 1)`

B

`(a + (1)/(a) - 1) (a + (1)/(a) + 1 )`

C

`(a + (1)/(a) +1 ) (a + (1)/(a) + 1)`

D

`(a + (1)/(a) - 1) (a + (1)/(a) - 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( a^2 + \frac{1}{a^2} + 3 - 2a - \frac{2}{a} \), we will follow these steps: ### Step 1: Rewrite the expression Start with the original expression: \[ a^2 + \frac{1}{a^2} + 3 - 2a - \frac{2}{a} \] ### Step 2: Group terms Notice that \( a^2 + \frac{1}{a^2} \) can be rewritten using the identity \( (a + \frac{1}{a})^2 = a^2 + 2 + \frac{1}{a^2} \). We can rearrange the expression: \[ = \left( a^2 + \frac{1}{a^2} \right) - 2a - \frac{2}{a} + 3 \] ### Step 3: Use the identity We can express \( a^2 + \frac{1}{a^2} \) in terms of \( (a + \frac{1}{a})^2 \): \[ = \left( (a + \frac{1}{a})^2 - 2 \right) - 2a - \frac{2}{a} + 3 \] This simplifies to: \[ = (a + \frac{1}{a})^2 - 2 - 2a - \frac{2}{a} + 3 \] \[ = (a + \frac{1}{a})^2 - 2a - \frac{2}{a} + 1 \] ### Step 4: Combine constants Now, combine the constants: \[ = (a + \frac{1}{a})^2 - 2a - \frac{2}{a} + 1 \] This can be rewritten as: \[ = (a + \frac{1}{a})^2 - 2(a + \frac{1}{a}) + 1 \] ### Step 5: Factor the quadratic Let \( x = a + \frac{1}{a} \). Then, we have: \[ = x^2 - 2x + 1 \] This factors to: \[ = (x - 1)^2 \] ### Step 6: Substitute back Substituting back \( x = a + \frac{1}{a} \): \[ = (a + \frac{1}{a} - 1)^2 \] ### Final Result Thus, the factorized form of the expression is: \[ (a + \frac{1}{a} - 1)^2 \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

Factorise: x ^(3) + (1)/(x ^(3)) - 2

Factorise x ^(2) + (1)/( x^(2)) + 2 - 3x - (3)/(x).

Factorise: 3x ^(2)-48

Factorise: y ^(2) - xy (1-x)-x ^(3)

Factorise: 3x ^(2) - 4x -4

Factorise: 4n^(2) - 8n +3

Factorise a^(2)x^(2)+(ax^(2)+1)x+a

Factorise a^(4) + a^(3) + a^(2) + a .

Factorise: 2n^2 + 3n

Factorise: 6x ^(2) - 17x -3