Home
Class 8
MATHS
If [(2x,3),(0,y-1)]=[(x-3,3),(0,2)] then...

If `[(2x,3),(0,y-1)]=[(x-3,3),(0,2)]` then the values of x and y respectively are

A

`3,-3`

B

`-3,3`

C

`-3,-3`

D

`3,3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the matrices \(\begin{pmatrix} 2x & 3 \\ 0 & y-1 \end{pmatrix} = \begin{pmatrix} x-3 & 3 \\ 0 & 2 \end{pmatrix}\), we will equate the corresponding elements of the matrices. ### Step 1: Equate the corresponding elements of the matrices From the first row, we have: 1. \(2x = x - 3\) 2. \(3 = 3\) (This equation is always true and does not provide any new information) From the second row, we have: 3. \(0 = 0\) (This equation is also always true) 4. \(y - 1 = 2\) ### Step 2: Solve the first equation \(2x = x - 3\) To isolate \(x\), we can rearrange the equation: \[ 2x - x = -3 \] This simplifies to: \[ x = -3 \] ### Step 3: Solve the second equation \(y - 1 = 2\) To isolate \(y\), we can rearrange the equation: \[ y = 2 + 1 \] This simplifies to: \[ y = 3 \] ### Final Values Thus, the values of \(x\) and \(y\) are: \[ x = -3, \quad y = 3 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSEMENT SHEET-14|5 Videos
  • MATRICES

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -2|20 Videos
  • MATRICES

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -2|20 Videos
  • LINEAR INEQUALITIES

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESMENT SHEET -13|10 Videos
  • NUMBERS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet|10 Videos

Similar Questions

Explore conceptually related problems

If 2 [{:(1, 3),(0,x):}] + [{:(y, 0),(1,2):}] ^(T) = {[{:( 5, 6),(1,8):}]^(T)} ^(T), then the values of x, y respectively are :

if [[2x+1,2y],[0,y^2+1]]=[[x+3,10],[0,26]] then the value of x+y

If [(-2x+y),(x+y+z),(x+y)]=[(-3),(3),(3)] , then the respective value of x,y and z are :

Find the value of x and y- 2x+3y=0 3x+4y=5

If (2x)/(3y)+(3y)/(2x)=1,(x,y!=0), then the value of 8x^(3)+27y^(3) is

If the points (x,y,-3), (2,0,-1) and (4,2,3) lie on a Straight line, then what is the value of x and y respectively?

If 2x -3y = 0 , then the value of 2x + 3y in terms of y is ____

If (x)/(y)+(y)/(x)=-1,[x,y!=0], then find the value of x^(3)-y^(3)