Home
Class 8
MATHS
If A=[a(ij)](mxxn),B=[b(ij)](mxxn) then ...

If `A=[a_(ij)]_(mxxn),B=[b_(ij)]_(mxxn)` then the element `C_(23)` of the matrix `C=A+B` is

A

`a_(13)+b_(13)`

B

`a_(23)+b_(32)`

C

`a_(23)+b_(23)`

D

`a_(32)+b_(23)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the element \( C_{23} \) of the matrix \( C \), where \( C = A + B \), we follow these steps: ### Step-by-Step Solution: 1. **Understand the Matrices**: We have two matrices \( A \) and \( B \), both of size \( m \times n \). The elements of these matrices are denoted as \( A = [a_{ij}] \) and \( B = [b_{ij}] \). 2. **Define the Resultant Matrix**: The resultant matrix \( C \) is defined as \( C = A + B \). This means that each element of matrix \( C \) is the sum of the corresponding elements of matrices \( A \) and \( B \). 3. **Identify the Element**: We need to find the specific element \( C_{23} \) in matrix \( C \). The notation \( C_{23} \) refers to the element in the second row and third column of matrix \( C \). 4. **Apply the Addition Rule**: According to the rules of matrix addition, the element \( C_{ij} \) is given by: \[ C_{ij} = A_{ij} + B_{ij} \] Therefore, for our specific case: \[ C_{23} = A_{23} + B_{23} \] 5. **Conclusion**: Thus, the element \( C_{23} \) of the matrix \( C \) is: \[ C_{23} = a_{23} + b_{23} \] ### Final Answer: The element \( C_{23} \) of the matrix \( C \) is \( a_{23} + b_{23} \). ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSEMENT SHEET-14|5 Videos
  • MATRICES

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -2|20 Videos
  • MATRICES

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -2|20 Videos
  • LINEAR INEQUALITIES

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESMENT SHEET -13|10 Videos
  • NUMBERS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet|10 Videos

Similar Questions

Explore conceptually related problems

A matrix A=[a_(ij)]_(mxxn) is

If A=[a_(ij)]_(mxxn) and B=[b_(ij)]_(nxxp) then (AB)^\' is equal to (A) BA^\' (B) B\'A (C) A\'B\' (D) B\'A\'

Let A=[a_("ij")]_(3xx3), B=[b_("ij")]_(3xx3) and C=[c_("ij")]_(3xx3) be any three matrices, where b_("ij")=3^(i-j) a_("ij") and c_("ij")=4^(i-j) b_("ij") . If det. A=2 , then det. (BC) is equal to _______ .

Statement-1 (Assertion and Statement- 2 (Reason) Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. Statement - 1 If mateix A= [a_(ij)] _(3xx3) , B= [b_(ij)] _(3xx3), where a_(ij) + a_(ji) = 0 and b_(ij) - b_(ji) = 0 then A^(4) B^(5) is non-singular matrix. Statement-2 If A is non-singular matrix, then abs(A) ne 0 .

If matrix A = [a_(ij)]_(3xx3), matrix B= [b_(ij)]_(3xx3) where a_(ij) + a_(ij)=0 and b_(ij) - b_(ij) = 0 then A^(4) cdot B^(3) is

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

Let A=[a_(ij)]_(n xx n) where a_(ij)=i^(2)-j^(2). Then A is: (A) skew symmetric matrix (B) symmetric matrix (C) null matrix (D) unit matrix