Home
Class 8
MATHS
If [(2,-1),(2,0)]+2A=[(-3,5),(4,3)] the ...

If `[(2,-1),(2,0)]+2A=[(-3,5),(4,3)]` the matrix A equals

A

`[(-5,6),(2,3)]`

B

`[(-5/2,3),(1,3/2)]`

C

`[(-5/2,6),(2,3)]`

D

`[(-5,8),(1,3)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \([(2,-1),(2,0)]+2A=[(-3,5),(4,3)]\) for the matrix \(A\), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ (2, -1) \quad (2, 0) + 2A = (-3, 5) \quad (4, 3) \] ### Step 2: Isolate \(2A\) To isolate \(2A\), we can subtract the matrix \((2, -1) \quad (2, 0)\) from both sides: \[ 2A = [(-3, 5) \quad (4, 3)] - [(2, -1) \quad (2, 0)] \] ### Step 3: Perform the subtraction Now we perform the subtraction element-wise: \[ 2A = \begin{pmatrix} -3 - 2 & 5 - (-1) \\ 4 - 2 & 3 - 0 \end{pmatrix} \] Calculating each element: - First element: \(-3 - 2 = -5\) - Second element: \(5 - (-1) = 5 + 1 = 6\) - Third element: \(4 - 2 = 2\) - Fourth element: \(3 - 0 = 3\) So we have: \[ 2A = \begin{pmatrix} -5 & 6 \\ 2 & 3 \end{pmatrix} \] ### Step 4: Solve for \(A\) To find \(A\), we divide each element of \(2A\) by 2: \[ A = \frac{1}{2} \begin{pmatrix} -5 & 6 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} -\frac{5}{2} & 3 \\ 1 & \frac{3}{2} \end{pmatrix} \] ### Final Answer Thus, the matrix \(A\) is: \[ A = \begin{pmatrix} -\frac{5}{2} & 3 \\ 1 & \frac{3}{2} \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSEMENT SHEET-14|5 Videos
  • MATRICES

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -2|20 Videos
  • MATRICES

    S CHAND IIT JEE FOUNDATION|Exercise UNIT TEST -2|20 Videos
  • LINEAR INEQUALITIES

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESMENT SHEET -13|10 Videos
  • NUMBERS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet|10 Videos

Similar Questions

Explore conceptually related problems

If [(2,1),(7,4)]A[(-3,2),(5,-3)]=[(1,0),(0,1)] then matrix A equals

If A is any 2 xx matrix such that [{:(1,2),(0,3):}]A=[{:(-1,0),(6,3):}] then what is A equal to ?

If A=[(1,4),(3,2),(2,5)], B=[(-1,-2),(0,5),(3,1)] , find the matrix D such that A+B-D=0 .

Given A=[(1,2,-3),(5,0,2),(1,-1,1)] and b=[(3,-1,2),(4,2,5),(2,0,3)] , find the matrix C such that A+C=B .

If the matrix A is such that A[{:(-1,2),(3,1):}]=[{:(-4,1),(7,7):}] ,then A is equal to

Let A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x)] be a matrix. If A^(2)=A , then the value of x is equal to