Home
Class 8
MATHS
If cos theta = (12)/(13) , find the val...

If `cos theta = (12)/(13) ` , find the value of `2 sin theta - 4 tan, theta " where " theta` is a acute

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(2 \sin \theta - 4 \tan \theta\) given that \(\cos \theta = \frac{12}{13}\) and \(\theta\) is an acute angle. ### Step 1: Understand the relationship between sides in a right triangle Given \(\cos \theta = \frac{12}{13}\), we can interpret this in a right triangle where: - The adjacent side (base) = 12 - The hypotenuse = 13 ### Step 2: Find the length of the opposite side using the Pythagorean theorem Using the Pythagorean theorem: \[ AB^2 + BC^2 = AC^2 \] Let \(AB\) be the opposite side, \(BC\) be the adjacent side (12), and \(AC\) be the hypotenuse (13). \[ AB^2 + 12^2 = 13^2 \] \[ AB^2 + 144 = 169 \] \[ AB^2 = 169 - 144 = 25 \] \[ AB = \sqrt{25} = 5 \] ### Step 3: Calculate \(\sin \theta\) and \(\tan \theta\) Now we can find \(\sin \theta\) and \(\tan \theta\): - \(\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{5}{13}\) - \(\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{5}{12}\) ### Step 4: Substitute values into the expression \(2 \sin \theta - 4 \tan \theta\) Now substitute \(\sin \theta\) and \(\tan \theta\) into the expression: \[ 2 \sin \theta - 4 \tan \theta = 2 \left(\frac{5}{13}\right) - 4 \left(\frac{5}{12}\right) \] Calculating each term: \[ = \frac{10}{13} - \frac{20}{12} \] ### Step 5: Find a common denominator and simplify The common denominator of 13 and 12 is \(13 \times 12 = 156\): \[ = \frac{10 \times 12}{156} - \frac{20 \times 13}{156} = \frac{120}{156} - \frac{260}{156} \] \[ = \frac{120 - 260}{156} = \frac{-140}{156} \] ### Step 6: Simplify the fraction Now simplify \(\frac{-140}{156}\): \[ = \frac{-70}{78} = \frac{-35}{39} \] ### Final Answer Thus, the value of \(2 \sin \theta - 4 \tan \theta\) is: \[ \boxed{\frac{-35}{39}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank - 32 |20 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 31 |1 Videos
  • TRIANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet|10 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos

Similar Questions

Explore conceptually related problems

If cosec theta = (13)/(12) , then find the values of cot theta and sin theta .

If cos theta=(3)/(5), find the value of (sin theta-(1)/(tan theta))/(2tan theta)

If sin theta=12/13 then find the values of cos theta and tan theta

If cos ec theta=(13)/(12), find the value of (2sin theta-3cos theta)/(4sin theta-9cos theta)

If sin theta=(3)/(5), then find the values of cos theta and tan theta

If tan theta=(a)/(b) , find the value of (a sin theta-b cos theta)/(asin theta+b cos theta)

If sec theta=(5)/(4), find the value of (sin theta-2cos theta)/(tan theta-cot theta)

If tan theta=(m)/(n), then find the value of cos theta and sin theta.

If cosec theta =13/12 , then the value of (2 sin theta -3cos theta )/(4sin theta -9 cos theta ) is: यदि cosec theta = 13/12 , तो (2 sin theta -3cos theta )/(4sin theta -9 cos theta ) का मान ज्ञात करें