Home
Class 8
MATHS
If b tan theta = a find the value of (c...

If `b tan theta ` = a find the value of `(cos theta + sin theta )/( cos theta - sin theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta}\) given that \(b \tan \theta = a\). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ b \tan \theta = a \] From this, we can express \(\tan \theta\) in terms of \(a\) and \(b\): \[ \tan \theta = \frac{a}{b} \] 2. **Rewrite the expression we need to evaluate:** We need to find: \[ \frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} \] 3. **Divide the numerator and denominator by \(\cos \theta\):** \[ \frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} = \frac{\frac{\cos \theta}{\cos \theta} + \frac{\sin \theta}{\cos \theta}}{\frac{\cos \theta}{\cos \theta} - \frac{\sin \theta}{\cos \theta}} = \frac{1 + \tan \theta}{1 - \tan \theta} \] 4. **Substitute \(\tan \theta\) with \(\frac{a}{b}\):** Now, replace \(\tan \theta\) in the expression: \[ \frac{1 + \tan \theta}{1 - \tan \theta} = \frac{1 + \frac{a}{b}}{1 - \frac{a}{b}} \] 5. **Simplify the expression:** To simplify, find a common denominator for both the numerator and the denominator: \[ = \frac{\frac{b + a}{b}}{\frac{b - a}{b}} = \frac{b + a}{b - a} \] 6. **Final Result:** Thus, the value of \(\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta}\) is: \[ \frac{b + a}{b - a} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank - 32 |20 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 31 |1 Videos
  • TRIANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet|10 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos

Similar Questions

Explore conceptually related problems

If tan theta=(a)/(b) then find the value of (cos theta+sin theta)/(cos theta-sin theta)

If tan theta=(4)/(5), find the value of (cos theta-sin theta)/(cos theta+sin theta)

If 3tan theta=4, find the value of (4cos theta-sin theta)/(2cos theta+sin theta)

If 3cot theta=4, find the value of (4cos theta-sin theta)/(2cos theta+sin theta)

If 5 tan theta =4, find the value of (5 sin theta - 3 cos theta)/(5 sin theta +2 cos theta)

If 5 tan theta =4 then find the value of (5 sin theta - cos theta)/(sin theta + 3 cos theta)

If tan theta=(m)/(n), then find the value of cos theta and sin theta.

If sec theta =(5)/(4),"find the value of "((2cos theta - sin theta ))/((cot theta - tan theta ))=.

If tan theta=(a)/(b) , find the value of (a sin theta-b cos theta)/(asin theta+b cos theta)