Home
Class 8
MATHS
Prove that sec^(2) theta + cosec^(2) the...

Prove that `sec^(2) theta + cosec^(2) theta = sec^(2) theta * cosec^(2) theta`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \sec^2 \theta + \csc^2 \theta = \sec^2 \theta \cdot \csc^2 \theta \), we will start with the left-hand side (LHS) and manipulate it to show that it equals the right-hand side (RHS). ### Step-by-Step Solution: 1. **Start with the LHS**: \[ \text{LHS} = \sec^2 \theta + \csc^2 \theta \] 2. **Rewrite secant and cosecant in terms of sine and cosine**: \[ \sec^2 \theta = \frac{1}{\cos^2 \theta} \quad \text{and} \quad \csc^2 \theta = \frac{1}{\sin^2 \theta} \] Thus, we can rewrite LHS as: \[ \text{LHS} = \frac{1}{\cos^2 \theta} + \frac{1}{\sin^2 \theta} \] 3. **Find a common denominator**: The common denominator for the fractions is \( \cos^2 \theta \sin^2 \theta \): \[ \text{LHS} = \frac{\sin^2 \theta + \cos^2 \theta}{\cos^2 \theta \sin^2 \theta} \] 4. **Use the Pythagorean identity**: We know from trigonometric identities that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Therefore, we can substitute this into our equation: \[ \text{LHS} = \frac{1}{\cos^2 \theta \sin^2 \theta} \] 5. **Rewrite the expression**: Now, we can rewrite this as: \[ \text{LHS} = \frac{1}{\cos^2 \theta} \cdot \frac{1}{\sin^2 \theta} = \sec^2 \theta \cdot \csc^2 \theta \] 6. **Conclude the proof**: Thus, we have shown that: \[ \text{LHS} = \sec^2 \theta \cdot \csc^2 \theta \] Therefore, we conclude that: \[ \sec^2 \theta + \csc^2 \theta = \sec^2 \theta \cdot \csc^2 \theta \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank - 32 |20 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 31 |1 Videos
  • TRIANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet|10 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos

Similar Questions

Explore conceptually related problems

Prove that (i) sec^(2) theta + "cosec"^(2) theta = sec^(2) theta "cosec"^(2) theta (ii) tan^(2) theta - sin^(2)theta = tan^(2)theta sin^(2)theta (iii) tan^(2) theta + cot^(2)theta +2 = sec^(2) theta "cosec"^(2) theta

Prove that: sec^(2)theta+"cosec"^(2)theta=sec^(2)thetaxx"cosec"^(2)theta.

Prove that: sec^(2)theta+csc^(2)theta>=4

prove that: tan^(2) theta-cot^(2) theta=sec^(2) theta- cosec^(2) theta

sec^(2)theta+csc^(2)theta=sec^(2)theta xx cos e^(2)theta

The value of 2 sec^(2) theta - sec^(4) theta - 2 cosec^(2)theta + cosec^(4) theta is

Prove that sqrt( sec^(2) theta + "cosec"^(2) theta )= tan theta + cot theta .