Home
Class 8
MATHS
Show that ((1 + cos theta - sin ^(2) the...

Show that `((1 + cos theta - sin ^(2) theta)/( sin theta (1 + cos theta ))) = cot theta `

Text Solution

AI Generated Solution

The correct Answer is:
To show that \[ \frac{1 + \cos \theta - \sin^2 \theta}{\sin \theta (1 + \cos \theta)} = \cot \theta, \] we will simplify the left-hand side (LHS) step by step. ### Step 1: Write down the LHS The left-hand side of the equation is: \[ \frac{1 + \cos \theta - \sin^2 \theta}{\sin \theta (1 + \cos \theta)}. \] ### Step 2: Use the Pythagorean Identity Recall the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1. \] From this, we can express \(\sin^2 \theta\) as: \[ \sin^2 \theta = 1 - \cos^2 \theta. \] Substituting this into the LHS gives: \[ 1 + \cos \theta - (1 - \cos^2 \theta) = 1 + \cos \theta - 1 + \cos^2 \theta = \cos \theta + \cos^2 \theta. \] ### Step 3: Rewrite the LHS Now, we can rewrite the LHS as: \[ \frac{\cos \theta + \cos^2 \theta}{\sin \theta (1 + \cos \theta)}. \] ### Step 4: Factor out \(\cos \theta\) Notice that we can factor \(\cos \theta\) from the numerator: \[ \frac{\cos \theta (1 + \cos \theta)}{\sin \theta (1 + \cos \theta)}. \] ### Step 5: Cancel out \(1 + \cos \theta\) Assuming \(1 + \cos \theta \neq 0\), we can cancel \(1 + \cos \theta\) from the numerator and the denominator: \[ \frac{\cos \theta}{\sin \theta}. \] ### Step 6: Write in terms of cotangent The expression \(\frac{\cos \theta}{\sin \theta}\) is equal to \(\cot \theta\): \[ \cot \theta. \] ### Conclusion Thus, we have shown that: \[ \frac{1 + \cos \theta - \sin^2 \theta}{\sin \theta (1 + \cos \theta)} = \cot \theta, \] which confirms that the left-hand side is equal to the right-hand side (RHS). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank - 32 |20 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 31 |1 Videos
  • TRIANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet|10 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos

Similar Questions

Explore conceptually related problems

Prove each of the following identities : (1+ cos theta - sin^(2) theta)/(sin theta (1+ cos theta)) = cot theta

Prove: (1+cos theta-sin^(2)theta)/(sin theta(1+cos theta))=cot theta

(1 + sin theta-cos theta) / (1 + sin theta + cos theta)

(1 + sin theta-cos theta) / (1 + sin theta + cos theta) =

Prove that: (sin2 theta)/(1-cos2 theta)=cot theta

1- (sin ^ (2) theta) / (1 + cos theta) + (1 + cos theta) / (sin theta) - (sin theta) / (1-cos theta) - (1) / (sec theta)

Prove that : tan theta - cot theta = (2 sin^(2) theta - 1)/(sin theta cos theta)

(sin theta)/(1-cos theta)=cos ec theta+cot theta

(1 + cos theta + sin theta) / (1 + cos theta-sin theta) = (1 + sin theta) / (cos theta)

Prove each of the following identities : (i) (1+ cos theta + sin theta)/(1+ cos theta - sin theta) =(1+ sin theta)/(cos theta) (ii) (sin theta + 1- cos theta)/(cos theta - 1 + sin theta) = (1+ sin theta)/(cos theta)