Home
Class 8
MATHS
If tan theta = (x)/(y) , " then " (x si...

If tan ` theta = (x)/(y) , " then " (x sin theta + y cos theta)/( x sin theta - y cos theta)` is equal to

A

`(x^(2) + y^(2))/( x^(2) - y^(2))`

B

` (x^(2) - y^(2))/(x^(2) + y^(2))`

C

`(x)/(sqrt(x^(2) + y^(2)))`

D

` (y)/( sqrt(x^(2) + y^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \tan \theta = \frac{x}{y} \) and we need to find the value of \[ \frac{x \sin \theta + y \cos \theta}{x \sin \theta - y \cos \theta}, \] we can follow these steps: ### Step 1: Express \( \tan \theta \) in terms of sine and cosine Since \( \tan \theta = \frac{\sin \theta}{\cos \theta} \), we can rewrite \( \tan \theta \) as: \[ \frac{\sin \theta}{\cos \theta} = \frac{x}{y}. \] ### Step 2: Rewrite \( \sin \theta \) and \( \cos \theta \) From the equation \( \tan \theta = \frac{x}{y} \), we can express \( \sin \theta \) and \( \cos \theta \) in terms of \( x \) and \( y \): \[ \sin \theta = \frac{x}{\sqrt{x^2 + y^2}} \quad \text{and} \quad \cos \theta = \frac{y}{\sqrt{x^2 + y^2}}. \] ### Step 3: Substitute \( \sin \theta \) and \( \cos \theta \) into the expression Now, substitute \( \sin \theta \) and \( \cos \theta \) into the expression: \[ x \sin \theta + y \cos \theta = x \left(\frac{x}{\sqrt{x^2 + y^2}}\right) + y \left(\frac{y}{\sqrt{x^2 + y^2}}\right). \] This simplifies to: \[ \frac{x^2 + y^2}{\sqrt{x^2 + y^2}}. \] Similarly, for the denominator: \[ x \sin \theta - y \cos \theta = x \left(\frac{x}{\sqrt{x^2 + y^2}}\right) - y \left(\frac{y}{\sqrt{x^2 + y^2}}\right). \] This simplifies to: \[ \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}. \] ### Step 4: Combine the results Now we can combine the results into the original expression: \[ \frac{x \sin \theta + y \cos \theta}{x \sin \theta - y \cos \theta} = \frac{\frac{x^2 + y^2}{\sqrt{x^2 + y^2}}}{\frac{x^2 - y^2}{\sqrt{x^2 + y^2}}}. \] ### Step 5: Simplify the expression The \( \sqrt{x^2 + y^2} \) cancels out: \[ = \frac{x^2 + y^2}{x^2 - y^2}. \] Thus, the final result is: \[ \frac{x^2 + y^2}{x^2 - y^2}. \] ### Final Answer The expression \( \frac{x \sin \theta + y \cos \theta}{x \sin \theta - y \cos \theta} \) is equal to \[ \frac{x^2 + y^2}{x^2 - y^2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 31 |1 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32|1 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 40|1 Videos
  • TRIANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet|10 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos

Similar Questions

Explore conceptually related problems

If (sin theta)/(x)=(cos theta)/(y) then sin theta-cos theta

if tan theta=(x)/(y) then sin2 theta+cos2 theta is

x sin ^ (3) theta + y cos ^ (3) theta = sin theta cos theta and x sin theta = y cos theta Find the value of x ^ (2) + y ^ (2)

if theta is a parameter then x=a ( sin theta + cos theta), y=b( sin theta - cos theta ) respresents

If x = sin theta - cos theta and y = sin theta + cos theta , then (dy)/(dx) =

If x sin^(3) theta + y cos^(3) theta = sin theta cos theta ne 0 and x sin theta - y cos theta = 0 , then value of (x^(2) + y^(2)) is :

If x sin^(3) theta + y cos^(3) theta = sin theta cos theta and x sin theta = y cos theta , then the value of x^(2) + y^(2) is :

If tan theta=4 then ((tan theta)/((sin^(3)theta)/(cos theta)+sin theta cos theta)) is equal to

S CHAND IIT JEE FOUNDATION-TRIGONOMETRICAL RATIOS -Question Bank - 32
  1. If cos theta = (5)/(13) , theta being an acute angle then the value ...

    Text Solution

    |

  2. If p sin x = q and x is acute then sqrt(p^(2) - q^(2)) tan x is equal...

    Text Solution

    |

  3. If 8 tan A = 15, then the value of (sin a - cos A)/( sin A + cos A) is

    Text Solution

    |

  4. If sin theta : cos theta : : a : b then the value of sec theta is

    Text Solution

    |

  5. If than x = (4)/( 3), then the value of sqrt(((1 - sin x) (1 + s...

    Text Solution

    |

  6. If cos A = 0. 6 then 5 sin A - 3 tan A is equal to

    Text Solution

    |

  7. If cos theta = (3)/(5) , then the value of (sin theta . tan theta + 1)...

    Text Solution

    |

  8. If tan theta = (x)/(y) , " then " (x sin theta + y cos theta)/( x sin...

    Text Solution

    |

  9. In a Delta ABC right angled at B, if tan A = (1)/( sqrt(3)) , find th...

    Text Solution

    |

  10. If 7 sin A = 24 cos A then 14 tan A + 25 cos A - 7 sec A equals

    Text Solution

    |

  11. The value of sin^2 theta cos^2 theta (sec^2 theta + cosec^2 theta ) is

    Text Solution

    |

  12. Which of the following is not an identity ?

    Text Solution

    |

  13. if x = a sec theta + b tan theta y = b sec theta + a tan theta ...

    Text Solution

    |

  14. If x = a cos ^(3) theta and y = b sin ^(3) theta, then the value of ...

    Text Solution

    |

  15. What is the value of (cosec A - sin A) (sec A - cos A) (tan A + cot A)...

    Text Solution

    |

  16. What is the value of (sin^(3) x + cos^(3) x)/( sin x + cos x) + sin x...

    Text Solution

    |

  17. (cos theta)/(1 - sin theta) + (cos theta)/( 1 + sin theta) equals

    Text Solution

    |

  18. Consider the following : 1. tan^(2) theta - sin^(2) theta = tan^(2)...

    Text Solution

    |

  19. sin^(4) theta + 2 cos^(2) theta (1 - (1)/( sec^(2) theta)) + cos ^(4) ...

    Text Solution

    |

  20. If sin theta + sin ^(2) theta =1, " then" cos^(2) theta + cos^(4) the...

    Text Solution

    |