Home
Class 7
MATHS
The sum of 3p^(2)q^(2)- 5pq + 4 " and " ...

The sum of `3p^(2)q^(2)- 5pq + 4 " and " 7 + 7pq - 2p^(2)q^(2)` is equal to

A

`p^(2)q^(2) - 2pq + 11`

B

`-p^(2)q^(2) + 2pq +11`

C

`-p^(2) q^(2) -2pq +11`

D

`p^(2)q^(2) + 2pq +11`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the expressions \(3p^2q^2 - 5pq + 4\) and \(7 + 7pq - 2p^2q^2\), we will follow these steps: ### Step 1: Write down the expressions We have two expressions: 1. \(3p^2q^2 - 5pq + 4\) 2. \(7 + 7pq - 2p^2q^2\) ### Step 2: Combine the expressions We will add the two expressions together: \[ (3p^2q^2 - 5pq + 4) + (7 + 7pq - 2p^2q^2) \] ### Step 3: Rearrange and group like terms Now, let's rearrange and group the like terms: \[ (3p^2q^2 - 2p^2q^2) + (-5pq + 7pq) + (4 + 7) \] ### Step 4: Simplify each group Now, we will simplify each group: 1. For \(p^2q^2\) terms: \[ 3p^2q^2 - 2p^2q^2 = (3 - 2)p^2q^2 = 1p^2q^2 = p^2q^2 \] 2. For \(pq\) terms: \[ -5pq + 7pq = (-5 + 7)pq = 2pq \] 3. For the constant terms: \[ 4 + 7 = 11 \] ### Step 5: Combine the simplified terms Now, we can combine all the simplified terms: \[ p^2q^2 + 2pq + 11 \] ### Final Answer Thus, the sum of the two expressions is: \[ p^2q^2 + 2pq + 11 \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (MULTIPLE CHOICE QUESTION) (LEVEL - 2)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (MATCHING)|2 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.4)|2 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

Add : 3p^(2)q^(2) - 4pq + 5, - 10p^(2) q^(2), 15 + 9pq + 7p^(2)q^(2)

The sum of -7 pq and 2pq is

Knowledge Check

  • If p^(2) + q^(2) = 7 pq then the value of (p)/( q) + (q)/( p) is equal to

    A
    9
    B
    5
    C
    7
    D
    3
  • If p^(2) + q ^(2) = 7 pq, then the value of (p)/(q) + (q)/(p) is equal to

    A
    4
    B
    5
    C
    7
    D
    3
  • (p-q)^(2)+4pq

    A
    `p^(2)-q^(2)`
    B
    `(p+q)^(2)`
    C
    `(2p-q)^(2)`
    D
    `(2p-2q)^(2)`
  • Similar Questions

    Explore conceptually related problems

    If 3p^(2)=5p+2 and 3q^(2)=5q+2 where p!=q,pq is equal to

    The number of ordered pair (p,q) (p and q are prime, p!=q ) such that p^(2)+7pq+q^(2) is the square of an integer

    If Delta=|[0,q,r],[q,r,p],[r,p,q]|, then |[rq-p^(2),pr-q^(2),pq-r^(2)],[rp-q^(2),pq-r^(2),rq-p^(2)],[pq-r^(2),rq-p^(2),pr-q^(2)]| is equal to

    If 3p^(2)=5p+2 and 3q^(2)=5q+2 where p!=q , then pq is equal to

    If p:q=3:2 and q:r=6:5 then p:q:r is equal to