Home
Class 7
MATHS
Add the following algebraic expressions ...

Add the following algebraic expressions and then find value at y =1
`(2y)/(3) - (5y^(2))/(3) + (5y^(3))/(2), - (4)/(3) + (2y^(2))/(3) - (y)/(2)`

A

`(1)/(3)`

B

`(-3)/(7)`

C

`(3)/(2)`

D

`(4)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to add the given algebraic expressions and then find the value at \( y = 1 \). ### Step 1: Write down the expressions We have two algebraic expressions: 1. \( \frac{2y}{3} - \frac{5y^2}{3} + \frac{5y^3}{2} \) 2. \( -\frac{4}{3} + \frac{2y^2}{3} - \frac{y}{2} \) ### Step 2: Combine the expressions We can combine these two expressions into one: \[ \left(\frac{2y}{3} - \frac{5y^2}{3} + \frac{5y^3}{2}\right) + \left(-\frac{4}{3} + \frac{2y^2}{3} - \frac{y}{2}\right) \] ### Step 3: Group like terms Now, we will group the like terms together: - Terms with \( y^3 \): \( \frac{5y^3}{2} \) - Terms with \( y^2 \): \( -\frac{5y^2}{3} + \frac{2y^2}{3} \) - Terms with \( y \): \( \frac{2y}{3} - \frac{y}{2} \) - Constant terms: \( -\frac{4}{3} \) ### Step 4: Simplify each group 1. **For \( y^2 \)**: \[ -\frac{5y^2}{3} + \frac{2y^2}{3} = -\frac{3y^2}{3} = -y^2 \] 2. **For \( y \)**: To add \( \frac{2y}{3} - \frac{y}{2} \), we need a common denominator, which is 6: \[ \frac{2y}{3} = \frac{4y}{6}, \quad -\frac{y}{2} = -\frac{3y}{6} \] Therefore: \[ \frac{4y}{6} - \frac{3y}{6} = \frac{1y}{6} = \frac{y}{6} \] 3. **Constant term**: The constant term remains as \( -\frac{4}{3} \). ### Step 5: Combine all simplified terms Putting it all together, we have: \[ \frac{5y^3}{2} - y^2 + \frac{y}{6} - \frac{4}{3} \] ### Step 6: Substitute \( y = 1 \) Now, we substitute \( y = 1 \) into the expression: \[ \frac{5(1)^3}{2} - (1)^2 + \frac{1}{6} - \frac{4}{3} \] This simplifies to: \[ \frac{5}{2} - 1 + \frac{1}{6} - \frac{4}{3} \] ### Step 7: Find a common denominator The common denominator for \( 2, 1, 6, \) and \( 3 \) is \( 6 \): - \( \frac{5}{2} = \frac{15}{6} \) - \( -1 = -\frac{6}{6} \) - \( \frac{1}{6} = \frac{1}{6} \) - \( -\frac{4}{3} = -\frac{8}{6} \) ### Step 8: Combine the fractions Now we can combine: \[ \frac{15}{6} - \frac{6}{6} + \frac{1}{6} - \frac{8}{6} = \frac{15 - 6 + 1 - 8}{6} = \frac{2}{6} = \frac{1}{3} \] ### Final Answer Thus, the final answer is: \[ \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (MULTIPLE CHOICE QUESTION) (LEVEL - 2)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (MATCHING)|2 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.4)|2 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

Add the following algebraic expressions: 2,(2y)/(3)-(5y^(2))/(3)+(5y^(3))/(2),-(4)/(3)+(2y^(2))/(3)-(y)/(2),(5y^(3))/(3)+3y^(2)+3y+(6)/(5)

Find the value of y when (5y-7)/(3y)=2

Solve for x and y : ( 3x )/( 2) - ( 5y )/( 3) = - 2, ( x)/(3) + ( y)/(2) = (13)/(6)

((y^(3)-3y^(2)+5y-1)/(y-1))

Find the following products and verify the result for x=-1,y=-2:(3x-5y)(x+y)(2)(x^(2)y-1)(3-2x^(2)y)((1)/(3)x-(y^(2))/(5))((1)/(3)x+(y^(2))/(5))

Simplify each of the following algebraic expressions by removing grouping symbols. 2x+(5x-3y) 2. 3x-(y-2x)

Add the following expressions: x^3y^2 + x^2y^3 +3y^4 and x^4 + 3x^2y^3 + 4y^4

Add the following expressions: x^3 - x^2y - xy^2 - y^3 and x^3-2x^2y + 3xy^2 + 4y

Subtract : 5y^(4) - 3y^(3) + 2y^(2) + y - 1 from 4y^(4) - 2y^(3) - 6y^(2) - y + 5

MTG IIT JEE FOUNDATION-ALGEBRAIC EXPRESSIONS-EXERCISE (MULTIPLE CHOICE QUESTION) (LEVEL - 1)
  1. If there are x rows of chairs and each row contains 3x chairs. Determi...

    Text Solution

    |

  2. Subtract : 3/2x^2y+4/5y-1/3x^2y z\ from \ (12)/5x^2y z-3/5x y z+2/3x^...

    Text Solution

    |

  3. Take away 9/2+x/2+3/5x^2+7/4x^3\ \ \ from\ \ 7/2-x/3-(x^2)/5dot

    Text Solution

    |

  4. Add the following algebraic expressions and then find value at y =1 ...

    Text Solution

    |

  5. A series of towers consist of cuboids of same size as shown below. The...

    Text Solution

    |

  6. The score of Ishita in Mathematics is 25 more than the two third of...

    Text Solution

    |

  7. John covers x centimetres in one step. How many centimetres does he ...

    Text Solution

    |

  8. Simplify : 4s^(2)t - 5st^(2) - 7s^(2)t - 3s^(2)t^(2) + 3st^(2) + 3s^(2...

    Text Solution

    |

  9. Simplify : a^(3)b - a^(2)b^(3) +4a^(2)b^(3) - 2a^(3)b^(2) - a^(3)b +...

    Text Solution

    |

  10. Subtract (2a - 3b + 4c) from the sum of (a + 3b - 4c), (4a - b +9c) an...

    Text Solution

    |

  11. If a = 1 and b = (-3), the value of 4a^(3)b^(2) - 3a^(2)b + 4ab^(2) - ...

    Text Solution

    |

  12. From the sum fo 5a^(2)b - 7 ab + 10 " and " -3a^(2)b + 3ab - 4, subtra...

    Text Solution

    |

  13. How much larger is 13x^(2) - 7 y^(2) " than " 6x^(2) - 9y^(2)?

    Text Solution

    |

  14. A pipe is (7x -3) metres long. A length of (5x - 7) metres is cut for ...

    Text Solution

    |

  15. If x = 3, and y = 4, find the value of y^(3)x^(2) + 7x^(2)y^(2) - 3xy ...

    Text Solution

    |

  16. The sum of x^(3) + x^(2) - 2x, 5x - 2x^(2) + 7x^(3) " and " 8x^(2) - 1...

    Text Solution

    |

  17. The coefficient of y^(2) " in " - 63x^(3)y^(2)z is

    Text Solution

    |

  18. Subtract 3y^(2) - 2xy - (7) /(2) x^(2) " from " (-2)/(3) y^(2) - (3)/(...

    Text Solution

    |

  19. The length of rectangle is (7x - 3y) units and its breadth is (3x + 4y...

    Text Solution

    |

  20. The value of m, if the value of 3x^(2) + x - m is equal to 7, when x =...

    Text Solution

    |