Home
Class 7
MATHS
Find the value of expression (x - 6) -...

Find the value of expression `(x - 6) - (x - 5) + 40 - 17 (x - 2) " at " x = (1)/(17)`

A

73

B

`-4`

C

75

D

72

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \((x - 6) - (x - 5) + 40 - 17(x - 2)\) at \(x = \frac{1}{17}\), we will follow these steps: ### Step 1: Substitute \(x\) with \(\frac{1}{17}\) We start by substituting \(x\) in the expression: \[ \left(\frac{1}{17} - 6\right) - \left(\frac{1}{17} - 5\right) + 40 - 17\left(\frac{1}{17} - 2\right) \] ### Step 2: Simplify each term Now we simplify each term inside the expression: 1. \(\frac{1}{17} - 6 = \frac{1 - 102}{17} = \frac{-101}{17}\) 2. \(\frac{1}{17} - 5 = \frac{1 - 85}{17} = \frac{-84}{17}\) 3. \(17\left(\frac{1}{17} - 2\right) = 17\left(\frac{1 - 34}{17}\right) = -33\) Now, substituting these simplified terms back into the expression: \[ \frac{-101}{17} - \frac{-84}{17} + 40 - (-33) \] ### Step 3: Combine the terms Now we combine the terms: \[ \frac{-101 + 84}{17} + 40 + 33 \] This simplifies to: \[ \frac{-17}{17} + 40 + 33 = -1 + 40 + 33 \] ### Step 4: Final Calculation Now, we calculate: \[ -1 + 40 + 33 = 72 \] Thus, the value of the expression at \(x = \frac{1}{17}\) is \(\boxed{72}\). ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (INTEGER/NUMERICAL VALUE TYPE)|10 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

Solve : (x + 6)(x-6) - (x-5)^(2) = 40 - 17(x-2)

Find the value of x, if 6x=23^(2)-17^(2)

The value of the expression x^(4)-17x^(3)+17x^(2)-17x+17 at x=16 is :

The minimum value of the expression abs(17x-8)-9 is

The minimum value of the expression abs(17x-8)-9 is :

Find the value of p, If bar x = 20 x: 15 17 19 20+p 23 f: 2 3 4 5 6