Home
Class 7
MATHS
Find the sum of 4x^(3)- 3x^(2) +2x- 5 " ...

Find the sum of `4x^(3)- 3x^(2) +2x- 5 " and " -7x^(3) + 6x^(2) - x + 11`.

A

`3x^(3) - 3x^(2) + x + 6`

B

`-3x^(3) +3x^(2) + x + 6`

C

`3x^3 + 3x^(2) - x -6`

D

`3x^(3) - 3x^(2)-x +6`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the two algebraic expressions \(4x^3 - 3x^2 + 2x - 5\) and \(-7x^3 + 6x^2 - x + 11\), we will follow these steps: ### Step 1: Write down the expressions We start with the two expressions: 1. \(4x^3 - 3x^2 + 2x - 5\) 2. \(-7x^3 + 6x^2 - x + 11\) ### Step 2: Combine the expressions We will add the two expressions together: \[ (4x^3 - 3x^2 + 2x - 5) + (-7x^3 + 6x^2 - x + 11) \] ### Step 3: Remove the parentheses This simplifies to: \[ 4x^3 - 3x^2 + 2x - 5 - 7x^3 + 6x^2 - x + 11 \] ### Step 4: Group like terms Now, we will group the like terms together: - Cubic terms: \(4x^3 - 7x^3\) - Quadratic terms: \(-3x^2 + 6x^2\) - Linear terms: \(2x - x\) - Constant terms: \(-5 + 11\) ### Step 5: Simplify each group Now we will simplify each group: 1. For cubic terms: \(4x^3 - 7x^3 = -3x^3\) 2. For quadratic terms: \(-3x^2 + 6x^2 = 3x^2\) 3. For linear terms: \(2x - x = 1x\) or simply \(x\) 4. For constant terms: \(-5 + 11 = 6\) ### Step 6: Write the final expression Combining all the simplified terms, we get: \[ -3x^3 + 3x^2 + x + 6 \] ### Final Answer Thus, the sum of the two expressions is: \[ -3x^3 + 3x^2 + x + 6 \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (INTEGER/NUMERICAL VALUE TYPE)|10 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

From the sum of 6x^(4) - 3x^(3) + 7x^(2) - 5x + 1 and -3x^(4) + 5x^(3) - 9x^(2) + 7x - 2 subtract 2x^(4) - 5x^(3) + 2x^(2) - 6x - 8

Subtract the sum of 2x-x^(2)+5 and -4x-3+7x^(2) om 5.

Add 7x^(2) -8x + 5, 3x^(2) -8x +5 and -6x^(2) + 15x - 5

(a) Find the quare root of (x^(2) - 8x +15) (2x^(2) -11x + 5) (2x^(2) - 7x + 3)

Subtract 11x^(3) -7x^(2) + 10x from 16x^(3) + 4x^(2) -11x

Add: (i) 3a - 2b + 5c, 2a + 5b - 7c, -a - b + c (ii) 8a - 6ab + 5b, -6a - ab - 8b, -4a + 2ab + 3b (iii) 2x^(3) - 3x^(2) + 7x - 8, -5x^(3) + 2x^(2) - 4x + 1, 3 - 6x + 5x^(2) - x^(3) (iv) 2x^(2) - 8xy + 7y^(2) - 8xy^(2), 2xy^(2) + 6xy - y^(2) + 3x^(2), 4y^(2) - xy - x^(2) + xy^(2) (v) x^(3) + y^(3) - z^(3) + 3xyz, - x^(3) + y^(3) + z^(3) - 6xyz, - x^(3) - y^(3) - z^(3) - 8xyz (vi) 2 + x - x^(2) + 6x^(3). -6 - 2x + 4x^(2) - 3x^(3). 2 + x^(2). 3 - x^(3) + 4x - 2x^(2)

If A = 4x^(3) - 8x^(2), B = 7x^(3) - 5x + 3 and C = 3x^(3) + x -11 , then find (A +C) - B