Home
Class 7
MATHS
Simplify : (25xx 216xx 729)/(6^(6)xx 5^(...

Simplify : `(25xx 216xx 729)/(6^(6)xx 5^(5)xx 9^(4))`

A

`(1)/((30)^(7)(9)^(8))`

B

`(1)/((5)^(6)(6)^(9)(9)^(7))`

C

`(1)/((5)^(2)(6)^(3)(9)^(3))`

D

`(1)/((30)^(3) xx 9)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((25 \times 216 \times 729)/(6^{6} \times 5^{5} \times 9^{4})\), we can follow these steps: ### Step 1: Factor the numbers in the numerator - \(25 = 5^2\) - \(216 = 6^3\) - \(729 = 9^3\) So, we can rewrite the numerator as: \[ 25 \times 216 \times 729 = 5^2 \times 6^3 \times 9^3 \] ### Step 2: Rewrite \(9\) in terms of its prime factors Since \(9 = 3^2\), we can express \(9^3\) as: \[ 9^3 = (3^2)^3 = 3^6 \] Thus, the numerator becomes: \[ 5^2 \times 6^3 \times 3^6 \] ### Step 3: Rewrite \(6\) in terms of its prime factors Since \(6 = 2 \times 3\), we can express \(6^3\) as: \[ 6^3 = (2 \times 3)^3 = 2^3 \times 3^3 \] Now substituting this back into the numerator gives: \[ 5^2 \times (2^3 \times 3^3) \times 3^6 = 5^2 \times 2^3 \times 3^{3+6} = 5^2 \times 2^3 \times 3^9 \] ### Step 4: Write the denominator The denominator is given as: \[ 6^{6} \times 5^{5} \times 9^{4} \] Now, we can rewrite \(6^6\) and \(9^4\): - \(6^6 = (2 \times 3)^6 = 2^6 \times 3^6\) - \(9^4 = (3^2)^4 = 3^8\) Thus, the denominator becomes: \[ (2^6 \times 3^6) \times 5^5 \times 3^8 = 2^6 \times 5^5 \times 3^{6+8} = 2^6 \times 5^5 \times 3^{14} \] ### Step 5: Combine the numerator and denominator Now we can write the entire expression as: \[ \frac{5^2 \times 2^3 \times 3^9}{2^6 \times 5^5 \times 3^{14}} \] ### Step 6: Simplify the expression Now we can simplify by subtracting the exponents of the same bases: - For \(2\): \(2^3 / 2^6 = 2^{3-6} = 2^{-3}\) - For \(5\): \(5^2 / 5^5 = 5^{2-5} = 5^{-3}\) - For \(3\): \(3^9 / 3^{14} = 3^{9-14} = 3^{-5}\) So, the expression simplifies to: \[ \frac{1}{2^3 \times 5^3 \times 3^5} \] ### Final Answer: \[ \frac{1}{2^3 \times 5^3 \times 3^5} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (VERY SHORT ANSWER TYPE)|10 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (SHORT ANSWER TYPE)|10 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (COMPREHENSION TYPE (PASSAGE-I))|3 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad / Hots Corner |20 Videos
  • FRACTIONS AND DECIMALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|13 Videos

Similar Questions

Explore conceptually related problems

Simplify: (3^(5)xx10^(5)xx25)/(5^(7)xx6^5)

Simplify : 5xx 10^(6)+4xx 10^(3)+5xx 10^(2)xx (1)/(10)

Simplify: ( 3^(-5) xx 10^(-5) xx 125)/( 5^(-7) xx 6^(-5) )

Simplify: (3^(-5)xx10^(-5)xx125)/(5^(-7)xx6^(-5))

Simplify: (-7)^2 xx (-9)^2 xx (-6)^3

Simplify frac(2^-3 xx 3^-2 xx 2^6)(6^2 xx 9 xx 3^-5

Simplify: 2/3 xx 3/5+5/2 xx 3/5 xx 7/6

Simplify: ((5^(-3)xx7^(4))/(7^(-2)xx5^(-6)))^((5)/(2))xx((5^(-3)xx7^(-3))/(7^(5)xx5^(2)))^((3)/(2))

Simplify: ((5^(-3)xx7^(4))/(7^(-2)xx5^(-6)))^((5)/(2))xx((5^(-3)xx7^(-3))/(7^(5)xx5^(2)))^((3)/(2))

Simplify : (i) (12^(4)+9^(3)xx4)/(6^(3)xx8^(2)xx27)( ii) 2^(3)xx a^(3)xx5a^(4)