Home
Class 12
MATHS
Prove that 3vec(OD)+vec(DA)+vec(DB)+vec(...

Prove that `3vec(OD)+vec(DA)+vec(DB)+vec(DC)` is equal to `vec(OA)+vec(OB)+vec(OC)`.

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 3|11 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|81 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

if A,B,C,D and E are five coplanar points, then vec(DA) + vec( DB) + vec(DC ) + vec( AE) + vec( BE) + vec( CE) is equal to :

ABCDE is a pentagon. Prove that the resultant of forces vec (AB), vec(AE), vec(BC), vec(DC), vec(ED) and vec(AC) is 3vec(AC) .

Statement 1 : In DeltaABC , vec(AB) + vec(BC) + vec(CA) = 0 Statement 2 : If vec(OA) = veca, vec(OB) = vecb , then vec(AB) = veca + vecb

Let vec(a), vec(b), vec(c) be vectors of length 3, 4, 5 respectively. Let vec(a) be perpendicular to vec(b)+vec(c), vec(b) to vec(c)+vec(a) and vec(c) to vec(a)+vec(b) . Then |vec(a)+vec(b)+vec(c)| is :

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

ABCDEF is a regular hexagon. Show that : vec(OA)+vec(OB)+vec(OC)+vec(OD)+vec(OE)+vec(OF)=vec0 . Where O is the centre of the hexagon.

Prove that [vec a+ vec b, vec b +vec c, vec c + vec a]= 2 [vec a vec b vec c]

If vec(a).vec(b)=0 and vec(a) xx vec(b)=0, " prove that " vec(a)= vec(0) or vec(b)=vec(0) .

D,E,F are mid-points of the sides of the triangle ABC, show that for any point O, the system of concurrent forces represented by vec(OA),vec(OB),vec(OC) is equivalent to the system represented by vec(OD),vec(OE),vec(OF) .

In pentagon ABCDE, prove that : vec(AB)+vec(BC)+vec(CD)+vec(DE)+vec(EA)=vec0 .

ARIHANT MATHS-VECTOR ALGEBRA-Exercise For Session 2
  1. If a=2hati-hatj+2hatk and b=-hati+hatj-hatk, then find a+b. Also, find...

    Text Solution

    |

  2. Find a unit vector in the direction of the resultant of the vectors (h...

    Text Solution

    |

  3. Find the direction cosines of the resultant of the vectors (hati+hatj+...

    Text Solution

    |

  4. In a regular hexagon ABCDEF, AB=a,BC=b and CD=c. Then,vec(AE) is equa...

    Text Solution

    |

  5. Prove that 3vec(OD)+vec(DA)+vec(DB)+vec(DC) is equal to vec(OA)+vec(OB...

    Text Solution

    |

  6. In a regular hexagon ABCDEF, bar(AB) + bar(AC)+bar(AD)+ bar(AE) + bar(...

    Text Solution

    |

  7. ABCDE is a pentagon. Prove that the resultant of forces vec (AB), vec(...

    Text Solution

    |

  8. find the area of square whose side is 25 cm.

    Text Solution

    |

  9. If P(-1,2) and Q(3,-7) are two points, express the vector PQ in terms ...

    Text Solution

    |

  10. If vec(OP)=2hati+3hatj-hatk and vec(OQ)=3hati-4hatj+2hatk find the mod...

    Text Solution

    |

  11. Show that the points : A(2hati-hatj+hatk),B(hati-3hatj-hatk),C(3hati-4...

    Text Solution

    |

  12. If a=2hati+2hatj-hatk and |xveca|=1, then find x.

    Text Solution

    |

  13. If p=7hati-2hatj+3hatk and q=3hati+hatj+5hatk, then find the magnitude...

    Text Solution

    |

  14. Find a vector in the direction of 5hati-hatj+2hatk, which has magnitud...

    Text Solution

    |

  15. If a=hati+2hatj+2hatk and b=3hati+6hatj+2hatk, then find a vector in t...

    Text Solution

    |

  16. Find the position vector of a point R which divides the line joining t...

    Text Solution

    |

  17. If the position vector of one end of the line segment AB be 2hati+3hat...

    Text Solution

    |