Home
Class 12
MATHS
Arrange in ascending order log(2)(x),log...

Arrange in ascending order
`log_(2)(x),log_(3)(x),log_(e)(x),log_(10)(x)`, if
II.`0ltxlt1`.

Text Solution

Verified by Experts

The correct Answer is:
which is ascending order.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise EXAMPLE|2 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(x->1) (log_3 3x)^(log_x 3)=

Which pair of functions is identical? a. sin^(-1)(sinx) " and " sin(sin^(-1)x) b. log_(e)e^(x),e^(log_(e)x) c. log_(e)x^(2),2log_(e)x d. None of the above

Solve log_4(log_3x)+log_(1//4)(log_(1//3)y)=0 and x^2+y^2=17/4 .

If y=log_(10)x+log_(e)x+log_(10)10 , then find (dy)/(dx)

Differentiate the following w.r.t.x. log_(10)x+log_(x)10+log_(x)x+log_(10)10

Solve : (3)/(2)log_(4)(x+2)^(2)+3=log_(4)(4-x)^(3)+log_(4)(6+x)^(3) .

Find the domain f(x)=log_(100x)((2 log_(10) x+1)/-x)

Solve the equation log_(2)(3-x)-log_(2)(("sin"(3pi)/4)/(5-x))=1/2+log_(2)(x+7)

Find domain of f(x)=log_(10)(1+x^(3)) .

If a>0, a ne1 , then log_(a)(x^n) =