Home
Class 12
MATHS
If x1 and x2 are the solutions of the eq...

If `x_1` and` x_2` are the solutions of the equation `x^(log_(10)x)=100x` such that `x_1gt1` and` x_2lt1`, the value of `(x_1x_2)/2`is

Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise EXAMPLE|2 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of the equation |x-1|-|2x-5|=2x

Solve the inequation (x^(2)+x+1)^(x)lt1

Solution of equation 2x + 1 = x + 3 is :

Solution(s) of the equation. 3x^2-2x^3 = log_2 (x^2 + 1) - log_2 x is/are

Solve the equation |x/(x-1)|+|x|=x^2/|x-1|

x_(1) and x_(2) are two solutions of the equation e^(x) cos x=1 , The minimum number of the solution of the equation e^(x) sin x =1 , lying between x_(1) and x_(2) can be

If x_1,x_2 & x_3 are the three real solutions of the equation x^(log_10^2 x+log_10 x^3+3)=2/((1/(sqrt(x+1)-1))-(1/(sqrt(x+1)+1))), where x_1 > x_2 > x_3, then these are in

Solve the following inequation . (xv) x^((log_10x)^2-3log_10x+1)gt1000

Solve the following equation. (log_10(x-3))/log_(10)(x^2-21)=1/2

The value of x satisfying the equation x + log_(10) (1 + 2^x) = x log_10 5 + log_10 6 is