Home
Class 12
MATHS
Given that log2a=lamda,log4b=lamda^2 and...

Given that `log_2a=lamda,log_4b=lamda^2` and `log_(c^2)(8)=2/(lamda^3+1)` write `log_2((a^2b^5)/5)` as a function of `lamda,(a,b,cgt0,cne1)`.

Text Solution

Verified by Experts

The correct Answer is:
`=2lamda+10lamda^2-3` `(lamda^3+1)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise EXAMPLE|2 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Solve for a, lamda if log_lamda acdotlog_(5)lamdacdotlog_(lamda)25=2 .

If log_lamdax.log_5lamda=log_x5,lamda ne1,lamdagt0 , then x is equal to

Prove that (log_(2)8)/(log_(3)9) =3/2

If log_(10)5=a and log_(10)3=b ,then

Solve the equation log_((log_(5)x))5=2

IF lamda^(log_(5)3 =81 ,find the value of lamda .

Given that log_2(3)=a,log_3(5)=b,log_7(2)=c , express the logrithm of the number 63 to the base 140 in terms of a,b & c.

Find values of lamda for which 1/log_3lamda+1/log_4lamdagt2 .

Solve the inequation log_(((x^2-12x+30)/10))(log_2((2x)/5))gt0

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-7/2) are in A.P., then x is equal to