Home
Class 12
MATHS
If the value of the determinant |(a,1, 1...

If the value of the determinant `|(a,1, 1) (1,b,1) (1,1,c)|` is positive then

A

abc`gt` 1

B

abc `gt`-8

C

abc `lt`-8

D

abc `gt`-2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 2|11 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 3|13 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Single Option Correct Type Questions|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|37 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant : |(1+a,1,1),(1,1+b,1),(1,1,1+c)| is :

If a,b,c and d are the roots of the equation x^(4)+2x^(3)+4x^(2)+8x+16=0 the value of the determinant |{:(1+a,1,1,1),(1,1+b,1,1),(1,1,1+c,1),(1,1,1,1+d):}| is

Calculate the value of the determinant |{:(1,1,1,1),(1,2,3,4),(1,3,6,10),(1,4,10,20):}|

Find the value of the determinant |(bc,ca, ab),( p, q, r),(1, 1, 1)|, where a ,b ,a n d c are respectively, the pth, qth, and rth terms of a harmonic progression.

Let omega=-(1)/(2)+i(sqrt(3))/(2) . Then the value of the determinant |{:(1,1,1),(1,-1-omega^(2),omega^(2)),(1, omega^(2), omega^(4)):}| is

Find the minors and cofactos of each entry of the first column of the matrix A ad hence find the value of the determinant in each case: A = [(1,a,bc),(1,b,ca),(1,c,ab)]

Using the properties of determinants, show that |(1+a,1,1),(1,1+b,1),(1,1,1+c)|=abc+bc+ca+ab

Determine the value of k so that the lie joining the points A(k,1,-1), B(2,0,2k) is perpendicular to the line joining the points C(4,2k,1) and D(2,3,2)

Evaluate the following: {:|(1,a,b+c),(1,b,c+a),(1,c,a+b)|

Evaluate the following determinant |(2,-1,0,1),(-3,0,1,-2),(1,1,-1,1),(2,-1,5,0)|