Home
Class 12
MATHS
If a+b+c=0, one root of |a-x c b c b-x a...

If `a+b+c=0,` one root of `|a-x c b c b-x a b a c-x|=0` is `x=1` b. `x=2` c. `x=a^2+b^2+c^2` d. `x=0`

A

1

B

2

C

`a^(2)+b^(2)+c^(2)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 3|13 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 4|10 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|37 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If a and b are the roots of x^2 -3x + p= 0 and c, d are roots of x^2 -12x + q= 0 , where a, b, c, d form a GP. Prove that (q + p) : (q -p)= 17:15.

The equation a sin x + b cos x = c, where |c| > sqrt (a^2 +b^2) has :

The determinant |y^2-x y x^2a b c a ' b ' c '| is equal to

If x^2+p x+1 is a factor of the expression a x^3+b x+c , then a^2-c^2=a b b. a^2+c^2=-a b c. a^2-c^2=-a b d. none of these

If x_1,x_2,x_3,x_4 be the roots of the equation x^4 + a x^3+b x^2 +cx + d =0 . If x_1 +x_2 = x_3 + x_4 and a,b,c,d in R ,then (i) lf a =2, then the value of b-c (ii) b <0 , then how many different values of a, we may have

The roots of the quadratic equation (a + b-2c)x^2+ (2a-b-c) x + (a-2b + c) = 0 are

Let alpha,beta be the roots of the equation (x-a)(x-b)=c ,c!=0 Then the roots of the equation (x-alpha)(x-beta)+c=0 are a ,c (b) b ,c a ,b (d) a+c ,b+c

If x^2+ax+1 is a factor of ax^3+ bx + c , then which of the following conditions is valid: a. a^2+c=0 b. b-a=ac c. c^3+c+b^2=0 d. 2c+a=b

If alpha, beta are the roots of the quadratic equation x^2 + bx - c = 0 , the equation whose roots are b and c , is a. x^(2)+alpha x- beta=0 b. x^(2)-[(alpha +beta)+alpha beta]x-alpha beta( alpha+beta)=0 c. x^(2)+[(alpha + beta)+alpha beta]x+alpha beta(alpha + beta)=0 d. x^(2)+[(alpha +beta)+alpha beta)]x -alpha beta(alpha +beta)=0

If a,b,c and in A.P, then x^a,x^b,x^c are in: