Home
Class 12
MATHS
If l(i)^(2)+m(i)^(2)+n(i)^(2)=1, (i=1,2,...

If `l_(i)^(2)+m_(i)^(2)+n_(i)^(2)=1`, (i=1,2,3) and `l_(i)l_(j)+m_(i)m_(j)+n_(i)n_(j)=0,(i ne j,i,j=1,2,3)` and `Delta=|{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}|` then

A

`|Delta|`=3

B

`|Delta|`=2

C

`|Delta|`=1

D

`|Delta|`=0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 4|10 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 2|11 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|37 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If A = [[l_(1),m_(1),n_(1)],[l_(2),m_(2),n_(2)],[l_(3),m_(3),n_(3)]] then Find A+I

A=[{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}] and B=[{:(p_(1),q_(1),r_(1)),(p_(2),q_(2),r_(2)),(p_(3),q_(3),r_(3)):}] Where p_(i), q_(i),r_(i) are the co-factors of the elements l_(i), m_(i), n_(i) for i=1,2,3 . If (l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)) and (l_(3),m_(3),n_(3)) are the direction cosines of three mutually perpendicular lines then (p_(1),q_(1), r_(1)),(p_(2),q_(2),r_(2)) and (p_(3),q_(),r_(3)) are

If (l_(1), m_(1), n_(1)) , (l_(2), m_(2), n_(2)) are D.C's of two lines, then (l_(1)m_(2)-l_(2)m_(1))^2+(m_(1)n_(2)-n_(1)m_(2))^2+(n_(1)l_(2)-n_(2)l_(1))^2+(l_(1)l_(2)+m_(1)m_(2)+n_(1)n_(2))^2=

If veca, vecb and vecc are any three non-coplanar vectors, then prove that points l_(1)veca+ m_(1)vecb+ n_(1)vecc, l_(2)veca+m_(2)vecb+n_(2)vecc, l_(3)veca+m_(3)vecb+ n_(3)vecc, l_(4)veca + m_(4)vecb+ n_(4)vecc are coplanar if |{:(l_(1),, l_(2),,l_(3),,l_(4)),(m_(1),,m_(2),,m_(3),,m_(4)), (n_1,,n_2,, n_3,,n_4),(1,,1,,1,,1):}|=0

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)

Evaluate sum_(i=0)^(n)sum_(j=0)^(n) ""^(n)C_(j) *""^(j)C_(i), ile j .

Evaluate sum_(i=0)^(n)sum_(j=0)^(n) ""^(n)C_(j) *""^(j)C_(i), ile j .

If (x + a_(1)) (x + a_(2)) (x + a_(3)) …(x + a_(n)) = x^(n) + S_(1) x^(n-1) + S_(2) x^(n-2) + …+ S_(n) where , S_(1) = sum_(i=0)^(n) a_(i), S_(2) = (sumsum)_(1lei lt j le n) a_(i) a_(j) , S_(3) (sumsumsum)_(1le i ltk le n)a_(i) a_(j) a_(k) and so on . Coefficient of x^(7) in the expansion of (1 + x)^(2) (3 + x)^(3) (5 + x)^(4) is

If (1+i)^(2n)+(1-i)^(2n)=-2^(n+1)(where,i=sqrt(-1) for all those n, which are