Home
Class 12
MATHS
If a(1),a(2),a(3) "and" b(1),b(2),b(3) i...

If `a_(1),a_(2),a_(3) "and" b_(1),b_(2),b_(3) in` R and are such that `a_(i)b_(j)ne "for" 1lt=I,jlt=3`,
`|{:((1-a_(1)^(3)b_(1)^(3))/(1-a_(1b_(1))),(1-a_(1)^(3)b_(2)^(3))/(1-a_(1b_(2))),(1-a_(1)^(3)b_(3)^(3))/(1-a_(1b_(3)))),((1-a_(2)^(3)b_(1)^(3))/(1-a_(2)b_(1)),(1-a_(2)^(3)b_(2)^(3))/(1-a_(2)b_(2)),(1-a_(2)^(3)b_(3)^(3))/(1-a_(2)b_(3))),((1-a_(3)^(3)b_(1)^(3))/(1-a_(3)b_(1)),(1-a_(3)^(3)b_(2)^(3))/(1-a_(3)b_(2)),(1-a_(3)^(3)b_(3)^(3))/(1-a_(3)b_(3))):}|gt` 0 provided either
`a_(1)lta_(2)lta_(3)" "and b_(1)ltb_(2)ltb_(3) " "or a_(1)gta_(2)gta_(3) " "and"b_(1)gtb_(2)gtb_(3).`

A

depends on `a_(i),i`=1,2,3,4

B

depends on `b_(i)`,i=1,2,3,4

C

dependes on `c_(i)`,i=1,2,3,4

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 4|10 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 2|11 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|37 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

the value of the determinant |{:((a_(1)-b_(1))^(2),,(a_(1)-b_(2))^(2),,(a_(1)-b_(3))^(2),,(a_(1)-b_(4))^(2)),((a_(2)-b_(1))^(2),,(a_(2)-b_(2))^(2) ,,(a_(2)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(3)-b_(1))^(2),,(a_(3)-b_(2))^(2),,(a_(3)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(4)-b_(1))^(2),,(a_(4)-b_(2))^(2),,(a_(4)-b_(3))^(2),,(a_(4)-b_(4))^(2)):}| is

Find the coefficient of x in the determinant |{:((1+x)^(a_(1)b_(1)),(1+x)^(a_(1)b_(2)),(1+x)^(a_(1)b_(3))),((1+x)^(a_(2)b_(1)),(1+x)^(a_(2)b_(2)),(1+x)^(a_(2)b_(3))),((1+x)^(a_(3)b_(1)),(1+x)^(a_(3)b_(2)),(1+x)^(a_(3)b_(3))):}|

Prove that |{:(a_(1)alpha_(1)+b_(1)beta_(1),a_(1)alpha_(2)+b_(1)beta_(2),a_(1)alpha_(3)+b_(1)beta_(3)),(a_(2)alpha_(1)+b_(2)beta_(1),a_(2)alpha_(2)+b_(2)beta_(2),a_(2)alpha_(3)+b_(2)beta_(3)),(a_(3)alpha_(1)+b_(3)beta_(1),a_(3)alpha_(2)+b_(3)beta_(2),a_(3)alpha_(3)+b_(3)beta_(3)):}| =0.

If |a_(1)|gt|a_(2)|+|a_(3)|,|b_(2)|gt|b_(1)|+|b_(3)| and |c_(2)|gt|c_(1)|+|c_(2)| then show that |{:(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3)):}|ne0.

If a_(1),a_(2),a_(3)"....." are in GP with first term a and common ratio r, then (a_(1)a_(2))/(a_(1)^(2)-a_(2)^(2))+(a_(2)a_(3))/(a_(2)^(2)-a_(3)^(2))+(a_(3)a_(4))/(a_(3)^(2)-a_(4)^(2))+"....."+(a_(n-1)a_(n))/(a_(n-1)^(2)-a_(n)^(2)) is equal to

If A_(1),A_(2),A_(3),...,A_(n),a_(1),a_(2),a_(3),...a_(n),a,b,c in R show that the roots of the equation (A_(1)^(2))/(x-a_(1))+(A_(2)^(2))/(x-a_(2))+(A_(3)^(2))/(x-a_(3))+…+(A_(n)^(2))/(x-a_(n)) =ab^(2)+c^(2) x+ac are real.

Let y = 1 + (a_(1))/(x - a_(1)) + (a_(2) x)/((x - a_(1))(x - a_(2))) + (a_(3) x^(2))/((x - a_(1))(x - a_(2))(x - a_(3))) + … (a_(n) x^(n - 1))/((x - a_(1))(x - a_(2))(x - a_(3))..(x - a_(n))) Find (dy)/(dx)

If (x+1/x+1)^(6)=a_(0)+(a_(1)x+(b_(1))/(x))+(a_(2)x^(2)+(b_(2))/(x^(2)))+"...."+(a_(6)x^(6)+(b_(6))/(x^(6))) , then find the value of a_0

If a_(1),a_(2),a_(3),"........",a_(n) are in AP with a_(1)=0 , prove that (a_(3))/(a_(2))+(a_(4))/(a_(3))+"......"+(a_(n))/(a_(n-1))-a_(2)((1)/(a_(2))+(1)/(a_(3))"+........"+(1)/(a_(n-2))) = (a_(n-1))/(a_(2))+(a_(2))/(a_(n-1)) .

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is equal to