Home
Class 12
MATHS
Let f(x)=|[sec^2x,1,1],[cos^2x,cos^2x,co...

Let `f(x)=|[sec^2x,1,1],[cos^2x,cos^2x,cosec^2x],[1,cos^2x,cot^2x]|`, then`∫ _ 0 ^( π/2) ​ ​ f(x)dx=`

A

`1/4`

B

`(pi)/(2)`

C

`(pi)/8`

D

`(3pi)/16`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|18 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|37 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

Let f(x)= |{:(secx,cosx, sec^2x+cotx cosecx), (cos^2x, cos^2x, cosec^2x),(1,cos^2x, cos^2x):}| Prove that int_0^(pi//2)f(x)dx=-pi/4-8/(15) .

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

Let f(x) = |{:(2cos ^(2) x,,sin 2x,,-sin x),(sin 2x,,2 sin^(2)x,,cos x),(sin x,,-cos x,,0):}| .then the value of int_(0)^(pi//2) [ f(x) +f'(x) ] dx " is "

int[(cot^2 2x-1)/(2cot2x)-cos8xcot4x]dx

f(x)=cot^(2)x*cos^(2)x , and g(x)=cot^(2)x-cos^(2)x prove that f(x)=g(x)

Find maximum value of f(x)=|{:(1+sin^(2)x,cos^(2)x,4sin2x),(sin^(2)x,1+cos^(2)x,4sin2x),(sin^(2)x,cos^(2)x,1+4sin2x):}| .

Let f(x)=|(cos x,e^(x^2) , 2x cos^2x/2),(x^2, sec x, sinx+x^3),(1,2,x+tan x)| then the value of int_(-pi/2)^(pi/2)(x^2+1)(f(x)+f''(x))dx

If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

If f(x) = |(sin x, cos x , tan x),(x^3, x^2 ,x),(2x, 1,x)| then Lim_(x to 0) (f(x))/(x^2) equals