Home
Class 12
MATHS
Statement-1 f(x) = |{:((1+x)^(11),(1+x)^...

Statement-1 f(x) = `|{:((1+x)^(11),(1+x)^(12),(1+x)^(13)),((1+x)^(21),(1+x)^(22),(1+x)^(23)),((1+x)^(31),(1+x)^(32),(1+x)^(33)):}|`
the cofferent of x in f(x)=0
Statement -2 If P(x)=`a_(0)+a_(1)x+a_(2)x^(2)+a_(2)x_(3) +cdots+a_(n)s^(n)` then `a_(1)=P'(0)`, where dash denotes the differential coefficient.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|17 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Determinants Exercise 7:|3 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Determinants Exercise 5:|5 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|37 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|((1+x)^a,(1+2x)^b,1),(1,(1+x)^a,(1+2x)^b), ((1+2x)^b,1,(1+x)^a)| then find constant term and coefficient of x

Find the coefficient of x in the determinant |{:((1+x)^(a_(1)b_(1)),(1+x)^(a_(1)b_(2)),(1+x)^(a_(1)b_(3))),((1+x)^(a_(2)b_(1)),(1+x)^(a_(2)b_(2)),(1+x)^(a_(2)b_(3))),((1+x)^(a_(3)b_(1)),(1+x)^(a_(3)b_(2)),(1+x)^(a_(3)b_(3))):}|

If the function f(x) is defined as : f(x) =a_(0) +a_(1)x^(2)+…..+ a_(10)x^(20) where 0 lt a_(0) lt …. < a_(10) . Then f(x) has in RR :

Differentiate |x|+a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+...+a_(n-1)x+a_(n)

If (1+2x+3x^2)^(10)=a_0+a_1x+a_2x^2++a_(20)x^(20),t h e na_1 equals

Let (1 + x^(2))^(2) (1 + x)^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … if a_(0),a_(1) " and " a_(2) are in A.P , the value of n is

|{:(x,e^(x-1),(x-1)^(3)),(x-lnx,cos(x-1),(x-1)^(2)),(tanx,sin^(2)x,cos^(2)x):}|=a_(0)+a_(1)(x-1)+a_(2)(x-1)^(2)cdots The value of cos^(-1) (a_(1)) is:

Let f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))and f(0)=0. f(1) is

If f(x)= |{:(x,x^(2),x^(3)),(1,2,3),(0,1,x):}| underset(x to1)limf(x) is equal to

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is