Home
Class 12
MATHS
If |a(1)|gt|a(2)|+|a(3)|,|b(2)|gt|b(1)|+...

If `|a_(1)|gt|a_(2)|+|a_(3)|,|b_(2)|gt|b_(1)|+|b_(3)|` and
`|c_(2)|gt|c_(1)|+|c_(2)|` then show that `|{:(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3)):}|ne0.`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|17 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|37 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

if a_(1)b_(1)c_(1), a_(2)b_(2)c_(2)" and " a_(3)b_(3)c_(3) are three-digit even natural numbers and Delta = |{:(c_(1),,a_(1),,b_(1)),(c_(2),,a_(2),,b_(2)),(c_(3),,a_(3),,b_(3)):}|" then " Delta is

If (1+ax+bx^(2))^(4)=a_(0) +a_(1)x+a_(2)x^(2)+…..+a_(8)x^(8), where a,b,a_(0) ,a_(1)…….,a_(8) in R such that a_(0)+a_(1) +a_(2) ne 0 and |{:(a_(0),,a_(1),,a_(2)),(a_(1),,a_(2),,a_(0)),(a_(2),,a_(0),,a_(1)):}|=0 then the value of 5.(a)/(b) " is " "____"

If a,b, and c are all different and if |{:(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3)):}| =0 Prove that abc =-1.

If a,b, and c are all different and if |{:(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3)):}| =0 Prove that abc =-1.

The number of functions from f:{a_(1),a_(2),...,a_(10)} rarr {b_(1),b_(2),...,b_(5)} is

Prove that |{:(a_(1)alpha_(1)+b_(1)beta_(1),a_(1)alpha_(2)+b_(1)beta_(2),a_(1)alpha_(3)+b_(1)beta_(3)),(a_(2)alpha_(1)+b_(2)beta_(1),a_(2)alpha_(2)+b_(2)beta_(2),a_(2)alpha_(3)+b_(2)beta_(3)),(a_(3)alpha_(1)+b_(3)beta_(1),a_(3)alpha_(2)+b_(3)beta_(2),a_(3)alpha_(3)+b_(3)beta_(3)):}| =0.

If Delta=|{:(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33)):}| and C_(ij)=(-1)^(i+j) M_(ij), "where " M_(ij) is a determinant obtained by deleting ith row and jth column then then |{:(C_(11),C_(12),C_(13)),(C_(21),C_(22),C_(23)),(C_(31),C_(32),C_(33)):}|=Delta^(2). Suppose a,b,c, in R, a+b+c gt 0, A =bc -a^(2),B =ca-b^(2) and c=ab-c^(2) and |{:(A,B,C),(B,C,A),(C,A,B):}| =49 then the valu of a^(3)+b^(3)+c^(3) -3abc is

the value of the determinant |{:((a_(1)-b_(1))^(2),,(a_(1)-b_(2))^(2),,(a_(1)-b_(3))^(2),,(a_(1)-b_(4))^(2)),((a_(2)-b_(1))^(2),,(a_(2)-b_(2))^(2) ,,(a_(2)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(3)-b_(1))^(2),,(a_(3)-b_(2))^(2),,(a_(3)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(4)-b_(1))^(2),,(a_(4)-b_(2))^(2),,(a_(4)-b_(3))^(2),,(a_(4)-b_(4))^(2)):}| is

Find the coefficient of x in the determinant |{:((1+x)^(a_(1)b_(1)),(1+x)^(a_(1)b_(2)),(1+x)^(a_(1)b_(3))),((1+x)^(a_(2)b_(1)),(1+x)^(a_(2)b_(2)),(1+x)^(a_(2)b_(3))),((1+x)^(a_(3)b_(1)),(1+x)^(a_(3)b_(2)),(1+x)^(a_(3)b_(3))):}|

If A_(1),A_(2),A_(3),...,A_(n),a_(1),a_(2),a_(3),...a_(n),a,b,c in R show that the roots of the equation (A_(1)^(2))/(x-a_(1))+(A_(2)^(2))/(x-a_(2))+(A_(3)^(2))/(x-a_(3))+…+(A_(n)^(2))/(x-a_(n)) =ab^(2)+c^(2) x+ac are real.