Home
Class 12
MATHS
Find the shortest distance and the vecto...

Find the shortest distance and the vector equation of the line of shortest distance between the lines given by `r=(3hat(i)+8hat(j)+3hat(k))+lambda(3hat(i)-hat(j)+hat(k)) and r=(-3hat(i)-7hat(j)+6hat(k))+mu(-3hat(i)+2hat(j)+4hat(k))`.

Text Solution

Verified by Experts

The correct Answer is:
`3sqrt(30)`
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS|Exercise JEE Type Solved Examples : Matching Type Questions|5 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS|Exercise Exercise For Session 1|12 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines vec(r)=(hat(i)+2hat(j)+hat(k))+lamda(hat(i)-hat(j)+hat(k)) and vec(r)=2hat(i)-hat(j)-hat(k)+mu(3hat(i)-hat(j)+hat(k))

Find the shortest distance between the following lines vec(r)=hat(i)-hat(j)-hat(k)+lamda(hat(i)+hat(j)-hat(k)) and vec(r)=3hat(i)-hat(j)-2hat(k)+mu(-hat(i)+2hat(j)+hat(k))

Find the shortest distance between the line vec(r)=hat(i)-7hat(j)-2hat(k)+lamda(hat(i)+3hat(j)+2hat(k)) and vec(r)=3hat(i)+4hat(j)-2hat(k)+mu(-hat(i)+2hat(j)+hat(k)) .

Find the shortest distance between the lines vec(r)=hat(i)+2hat(j)+3hat(k)+lamda(2hat(i)+3hat(j)+4hat(k)) and vec(r)=2hat(i)+4hat(j)+5hat(k)+mu(3hat(i)+4hat(j)+4hat(k))

Find the shortest distance between the following lines vec(r)=-hat(i)+2hat(j)-hat(k)+lamda(hat(i)+hat(j)-hat(k)) and vec(r)=hat(i)-hat(j)+2hat(k)+mu(-hat(i)+hat(j)+hat(k)) .

Find the shortest distance between the lines vec(r)=(4hat(i)-hat(j))+lamda(hat(i)+4hat(j)-3hat(k)) and vec(r)=(hat(i)-hat(j)+2hat(k))+mu(2hat(i)+3hat(j)-2hat(k))

Find the shortest distance between the following lines vec(r)=hat(i)+hat(j)-2hat(k)+lamda(hat(i)+hat(j)+hat(k)) and vec(r)=hat(i)+hat(j)+hat(k)+mu(hat(i)+hat(j)+hat(k))

Find the shortest distance between the lines vec(r)=hat(i)+hat(j)+lamda(2hat(i)-hat(j)+hat(k)) and vec(r)=2hat(i)+hat(j)-hat(k)+mu(3hat(i)-5hat(j)+2hat(k))