Home
Class 12
MATHS
Equation of the plane that contains the ...

Equation of the plane that contains the lines `r=(hat(i)+hat(j))+lambda(hat(i)+2hat(j)-hat(k)) and , r=(hat(i)+hat(j))+mu(-hat(i)+hat(j)-2hat(k))` is

A

`rcdot(2hat(i)+hat(j)-3hat(k))=-4`

B

`rtimes(-hat(i)+hat(j)+hat(k))=0`

C

`rcdot(-hat(i)+hat(j)+hat(k))=0`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
(c)
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS|Exercise JEE Type Solved Examples : Matching Type Questions|5 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS|Exercise Exercise For Session 1|12 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Find the vector equation of plane that contains the lines vec(r)=(hat(i)+hat(j))+s(hat(i)+2hat(j)-hat(k)) and vec(r)=(hat(i)+hat(j))+t(-hat(i)+hat(j)-2hat(k))

Find the vector and cartesian equation of the plane containing the two lines vec(r)=2hat(i)+hat(j)-3hat(k)+lamda(hat(i)+2hat(j)+5hat(k)) and vec(r)=3hat(i)+3hat(j)-7hat(k)+mu(3hat(i)-2hat(j)+5hat(k))

Find the shortest distance between the lines vec(r)=(4hat(i)-hat(j))+lamda(hat(i)+4hat(j)-3hat(k)) and vec(r)=(hat(i)-hat(j)+2hat(k))+mu(2hat(i)+3hat(j)-2hat(k))

A line passes through (1, -1, 3) and is perpendicular to the lines vecr=(hat(i)+hat(j)-hat(k))+lambda(2hat(i)-2hat(j)+hat(k)) and vecr=(2hat(i)-hat(j)-3hat(k))+mu(hat(i)+2hat(j)+2hat(k)). Obtain its equation.

Find the shortest distance between the lines vec(r)=4hat(i)-3hat(j)+lamda(hat(i)+2hat(j)-2hat(k)) and vec(r)=hat(i)+hat(j)-hat(k)-mu(2hat(i)+4hat(j)-4hat(k))

Find the shortest distance between the lines vec(r)=hat(i)-hat(j)+lamda(2hat(i)+hat(k)) and vec(r)=2hat(i)-hat(j)+mu(hat(i)+hat(j)-hat(k))

Find the equation of the straight line passing through the point (2,-1,3) and perpendicular to the lines vec(r)=(hat(i)+hat(j)-hat(k))+lamda(2hat(i)+hat(j)-3hat(k)) and vec(r)=(hat(i)-hat(j)-hat(k))+mu(hat(i)+hat(j)+hat(k)) .

Find the shortest distance between the following lines vec(r)=-hat(i)+2hat(j)-hat(k)+lamda(hat(i)+hat(j)-hat(k)) and vec(r)=hat(i)-hat(j)+2hat(k)+mu(-hat(i)+hat(j)+hat(k)) .

Find the shortest distance between the lines vec(r)=hat(i)+hat(j)+lamda(2hat(i)-hat(j)+hat(k)) and vec(r)=2hat(i)+hat(j)-hat(k)+mu(3hat(i)-5hat(j)+2hat(k))

Determine whether the lines vec(r)=3hat(i)-hat(j)+lamda(3hat(i)+hat(k)) and vec(r)=hat(i)-hat(j)+mu(2hat(i)+hat(j)-2hat(k)) intersect or not