Home
Class 12
MATHS
In a tetrahedron OABC, if OA=hat(i), OB=...

In a tetrahedron OABC, if `OA=hat(i), OB=hat(i)+hat(j) and OC=hat(i)+2hat(j)+hat(k)`,if shortest distance between egdes OA and BC is m, then `sqrt(2)m` is equal to …(where O is the origin).

Text Solution

Verified by Experts

The correct Answer is:
`(1)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|9 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS|Exercise Three Dimensional Coordinate System Exercise 11 : Subjective Type Questions|1 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS|Exercise Three Dimensional Coordinate System Exercise 9 : Match Type Questions|7 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

Knowledge Check

  • The projection of vec(a)=2hat(i)-hat(j)+hat(k) on vec(b)=hat(i)-2hat(j)+hat(k) is equal to :

    A
    `(5sqrt(6))/(3)`
    B
    `(5)/(sqrt(6))`
    C
    `(6)/(sqrt(14))`
    D
    `(sqrt(6))/(5)`
  • The value of hat(i). (hat(j) xx hat(k)) + hat(j). (hat(i) xx hat(k)) + hat(k). (hat(i) xx hat(j)) is

    A
    1
    B
    -1
    C
    3
    D
    0
  • Similar Questions

    Explore conceptually related problems

    A vector equally inclined to the vectors hat(i)-hat(j)+hat(k) and hat(i)+hat(j)-hat(k) then the plane containing them is

    If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

    Find the angle between the vectors 2 hat i -hat j+ hat k and 3 hat i +4hat j - hat k

    Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

    If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k) , where a, b, c are coplanar, then a+b+c-abc=

    Let bar a= hat i+ hat j+ hat k ,""b= hat i- hat j+2 hat k and bar c=x hat i+(x-2) hat j- hat k . If the vector c lies in the plane of a and b , then x equals