Home
Class 12
MATHS
Let ABCD be a rectangle and P be any poi...

Let ABCD be a rectangle and P be any point in its plane. Show that `PA^2+PC^2=PB^2+PD^2` using coordinate geometry.

Text Solution

Verified by Experts

The correct Answer is:
`PB^(2)+PD^(2)`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise SINGLE OPTION CORRECT TYPE QUESTIONS|1 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise For Session 1|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|37 Videos

Similar Questions

Explore conceptually related problems

If P be any point in the plane of square ABCD, prove that PA^(2)+PC^(2)=PB^(2)+PD^(2)

Let a vertical tower A B have its end A on the level ground. Let C be the mid point of A B and P be a point on the ground such that A P=2A Bdot If /_B P C=beta, then tanbeta is equal to : (1) 2/9 (2) 4/9 (3) 6/7 (4) 1/4

Consider a circle , in which a point P is lying inside the circle such that (PA)(PB)=(PC)(PD) ( as shown in figure ) . On the basis of above information , answer the question: Let PA=4 , PB=3 cm and CD is diameter of the circle having the length 8 cm. If PC gt PD , then (PC)/(PD) is equal to

Consider a circle , in which a point P is lying inside the circle such that (PA)(PB)=(PC)(PD) ( as shown in figure ) . On the basis of above information , answer the questions If log_(PA) x=2 , log_(PB)x=3, log_(x) PC=4 , then log_(PD) x is equal to

Consider a circle , in which a point P is lying inside the circle such that (PA)(PB)=(PC)(PD) ( as shown in figure ) . On the basis of above information , answer the questions If PA=| cos theta + sin theta | and PB=| cos theta - sin theta | , then maximum value of (PC)(PD) , is equal to

If P is any point on the plane l x+m y+n z=pa n dQ is a point on the line O P such that O P.O Q=p^2 , then find the locus of the point Qdot

Statement I Let A-= (0,1) and B -= (2,0) and P be a point on the line 4x+3y+9=0 then the co - ordinates of P such that |PA -PB| is maximum is (-12/5,17/5) Statement II |PA - PB | le |AB|

The coordinates of A ,\ B ,\ C are (6,\ 3),\ (-3,\ 5) and (4,\ -2) respectively and P is any point (x ,\ y) . Show that the ratio of the areas of triangles P B C and A B C is |(x+y-2)/7| .

The points A (4, 2), B (-2, 2) and D (4,-2) are three vertices of rectangle ABCD. Plot these points on a graph paper and hence find the co-ordinates of vertex C.

A variable plane which remains at a constant distance p from the origin cuts the co-ordinate axes at A, B, C. Through A,B,C planes are drawn parallel to the co-ordinate planes. Show that locus of the point of intersection is : x^(-2)+y^(-2)+z^(-2)=p^-2