Home
Class 12
MATHS
lim(x->oo) (x-sqrt(x^2+x))...

`lim_(x->oo) (x-sqrt(x^2+x))`

Text Solution

Verified by Experts

The correct Answer is:
`=-1/2`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS|Exercise SOLVED EXAMPLES|1 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|38 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos

Similar Questions

Explore conceptually related problems

For agt0, let l=lim_(xto(pi)/2)(a^(cotx)-a^(cosx))/(cotx-cosc) and m=lim_(xto-oo)(sqrt(x^(2)+ax))-(sqrt(x^(2)-ax)) then solve it

lim_(x->oo)(sqrt(x^4+ax^3+3x^2+b x+2)-sqrt(x^4+2x^3-cx^2+3x-d))=4

Evaluate the following limit : lim_(x rarr oo)(sqrt(x^2+x+1)- sqrt(x^2+1)) .

Evaluate : lim_(x to oo) sqrt(x^(2)+x +1) - sqrt(x^(2)+1)

Evaluate the following limit : lim_(x rarr oo)(sqrt(3x^2-1)+ sqrt (2x^2-1))/(4x+3) .

lim_(x to oo) ((x-3)/(x+2)) is equal to :

Evaluate the following limit : lim_(x rarr 0) (sqrt(a^2+ x^2) -sqrt(a^2-x^2))/(x^2) .

Evaluate the following limit : lim_(x rarr 0) (sqrt(1-x^2)-sqrt(1+x^2))/(2x^2) .

The quadratic equation whose roots are the minimum value of sin^(2)theta-sin theta+1/2 and lim_(xto oo)sqrt((x+1)(x+2))-x is

lim_(xto1)(sqrt(1-cos2(x-1)))/(x-1) ,