Home
Class 12
MATHS
Solve lim(xto0)[(sin|x|)/(|x|)], where [...

Solve `lim_(xto0)[(sin|x|)/(|x|)]`, where [.] denotes greatest integer function.

Text Solution

Verified by Experts

The correct Answer is:
Thus Limit doesn't exist as RHL `=0` and `LHL=-1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS|Exercise SOLVED EXAMPLES|1 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|38 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos

Similar Questions

Explore conceptually related problems

Solve lim_(xto0)["sin"(|x|)/x] , where e[.] denotes greatest integer function.

Solve lim_(xto0)[(sinx)/x] (where [.] denotes greatest integer function)

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

Solve lim_(xto0)[(tanx)/x] (where [.] denotes greatest integer function)

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

Solve lim_(xtooo) [tan^(-1)x] (where [.] denotes greatest integer function)

If l=lim_(xto1^(+))2^(-2^(1/(1-x))) and m=lim_(xto1^(+))(x sin (x-[x]))/(x-1) (where [.] denotes greatest integer function). Then (l+m) is ………….

The value of lim_(xto 0)[(sinx.tanx)/(x^(2))] is …….. (where [.] denotes greatest integer function).

The value of lim_(xto0)|x|^([cosx]) , [.] denotes greatest integer function is

Solve (i) lim_(xto0)cotx (ii) lim_(xto+oo)cot^(-1)x (where [.] denotes greatest integer function)