Home
Class 12
MATHS
If f(x)=(2cosx-sin2x)/((pi-2x)^(2)) ,g(x...

If `f(x)=(2cosx-sin2x)/((pi-2x)^(2))` ,`g(x)=(e^(-cosx)-1)/(8x-4pi)`
`h(x)=f(x)` for `x lt pi/2`
`h(x) = g(x)` for `x gt pi/2`then which of the following holds?

A

h is not differentiable at `x = pi//2`

B

h has an irremovable discontinuity at `x = pi//2`

C

h has a removable discontinuity at `x = pi//2`

D

`f((pi^(+))/(2))=g((pi^(-))/(2))`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise For Session 4|7 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise For Session 5|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise For Session 2|4 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Complex Number Exercise 8|3 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

f(x)=1+[cosx]x,"in "0ltxle(pi)/(2)

Consider f(x)={{:(cosx,0lexlt(pi)/(2)),(((pi)/(2)-x)^(2),(pi)/(2)lexltpi):} such that f is periodic with period pi . Then which of the following is not true?

{:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):} Which of the following is true for H_(1) (x) ?

If f(x) ={{:(-x=(pi)/(2),xle -(pi)/(2)), (- cos x, -(pi)/(2)lt x ,le 0):} ,( x-1, 0 lt x le 1),("in"x, x gt1):}

If y = (log_(cosx) sin x)(log_(sinx) cosx)^-1 + sin^-1((2x)/(1+x^2)) , find dy/dx at x = pi/4

Range of f(x)=(tan(pi[x^(2)-x]))/(1+sin(cosx))

sin^-1 (cosx) = pi/2 - x is valid for

Let f(x) = sin (pi/6 sin (pi/2 sinx)) for all x inR and g(x) = pi/2 sinx for all x in R . Let (fog)(x) dentoe f(g(x)) and (gof)(x) denote g(f(x)). Then which of the following is (are) True?